SIBO – jest to przerost bakterii w jelicie cienkim, które tak naprawdę powinny występować w takich ilościach(a nawet i mniejszych) w jelicie grubym. Doprowadza to do wzdęć, przelewania się w jelitach, wypiętego/napompowanego wręcz brzucha po każdym jedzeniu, które dostarcza węglowodany, które mogą fermentować. W miedzy czasie pojawia się masa innych objawów (przeważnie są to objawy wręcz wywołujące SIBO) takie jak zaparcia(ogólnie słaba perystaltyka jelit), małe ilości kwasu żołądkowego co pobudza jednocześnie Helicobacter pylori (jeśli ta bakteria była w organizmie ale w formie nieaktywnej). – Jak wygląda skład bakteryjny jelit u osób z opisywanym schorzeniem?Streptococcus, e.coli, staphylococcus(gronkowiec złocisty), Micrococcus, Klebsiella, Proteus, Lactobacillus, Bacteroides, Clostridium, Veillonella, Fusobacterium i na końcu tj.najmniej jest Peptostreptococcus. 1)ncbi.nlm.nih.gov/pubmed/10235214 …co dokładnie wołuje SIBO?co się wtedy dzieje?co zapobiega SIBO wg.oficjalnych badań?Wszystko co już może gdzieś tam przeczytałeś – i o wiele więcej rzeczy których nie wiedziałeś.
U kogo najczęściej występuje SIBO i jakie warunki wewnątrz organizmu są wręcz niezbędne do powstania tego schorzenia:
Co powoduje:
Co może pomóc lub po prostu leczy SIBO:
Dodatkowe informacje
Także może to wszystko podsumujmy.
Problem z prawidłową perystaltyką jelit, antybiotykoterapia zaburzenia pracy wątroby czy woreczka żółciowego, niskie poziomy cholesterolu(co wpływa na niskie poziomy żółci) czy też zaburzenia pracy receptora FXR, zaparcia i niedoczynność tarczycy, stany zapalne trzustki czy nawet za duża ilość omega 6 a za mała omega 3 – to główne problemy, które szybko doprowadzą do SIBO. Należy też wspierać limfocyty oraz niwelować stany zapalne jelit.
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Literatura
⇧1 | ncbi.nlm.nih.gov/pubmed/10235214 |
---|---|
⇧2 | ncbi.nlm.nih.gov/pubmed/24644547 |
⇧3 | ncbi.nlm.nih.gov/pubmed/26636484 |
⇧4 | ncbi.nlm.nih.gov/pubmed/26058109 |
⇧5 | ncbi.nlm.nih.gov/pubmed/21520278 |
⇧6 | ncbi.nlm.nih.gov/pubmed/24964506 |
⇧7 | ncbi.nlm.nih.gov/pubmed/27890460 |
⇧8 | ncbi.nlm.nih.gov/pubmed/20675008 |
⇧9 | ncbi.nlm.nih.gov/pubmed/17698907 |
⇧10 | ncbi.nlm.nih.gov/pubmed/24944923 |
⇧11 | ncbi.nlm.nih.gov/pubmed/21046243 |
⇧12 | ncbi.nlm.nih.gov/pubmed/28030512 |
⇧13 | ncbi.nlm.nih.gov/pubmed/24795035 |
⇧14 | ncbi.nlm.nih.gov/pubmed/24323179 |
⇧15 | ncbi.nlm.nih.gov/pubmed/21254165 |
⇧16 | ncbi.nlm.nih.gov/pubmed/27044499 |
⇧17 | ncbi.nlm.nih.gov/pubmed/23574267 |
⇧18 | ncbi.nlm.nih.gov/pubmed/26528017 |
⇧19 | ncbi.nlm.nih.gov/pubmed/8968867 |
⇧20 | ncbi.nlm.nih.gov/pubmed/27733912 |
⇧21 | ncbi.nlm.nih.gov/pubmed/22964959 |
⇧22 | ncbi.nlm.nih.gov/pubmed/10216811 |
⇧23 | ncbi.nlm.nih.gov/pubmed/27123301 |
⇧24 | ncbi.nlm.nih.gov/pubmed/17363465 |
⇧25 | ncbi.nlm.nih.gov/pubmed/19643023 |
⇧26 | ncbi.nlm.nih.gov/pubmed/24456736 |
⇧27 | ncbi.nlm.nih.gov/pubmed/17679296 |
⇧28 | ncbi.nlm.nih.gov/pubmed/16431299 |
⇧29 | ncbi.nlm.nih.gov/pubmed/20085122 |
⇧30 | ncbi.nlm.nih.gov/pubmed/16042917 |
⇧31 | ncbi.nlm.nih.gov/pubmed/2312752 |
⇧32 | ncbi.nlm.nih.gov/pubmed/17255834 |
⇧33 | ncbi.nlm.nih.gov/pubmed/9277428 |
⇧34 | ncbi.nlm.nih.gov/pubmed/3859909 |
⇧35 | ncbi.nlm.nih.gov/pmc/articles/PMC1915599/ |
⇧36 | ncbi.nlm.nih.gov/pubmed/19517230 |
⇧37, ⇧79 | ncbi.nlm.nih.gov/pubmed/27210778 |
⇧38 | ncbi.nlm.nih.gov/pubmed/22258033 |
⇧39 | ncbi.nlm.nih.gov/pubmed/21570907 |
⇧40 | ncbi.nlm.nih.gov/pubmed/20132150 |
⇧41 | ncbi.nlm.nih.gov/pubmed/25073651 |
⇧42 | ncbi.nlm.nih.gov/pubmed/25864343 |
⇧43, ⇧61 | ncbi.nlm.nih.gov/pubmed/17615175 |
⇧44 | ncbi.nlm.nih.gov/pubmed/18416345 |
⇧45 | ncbi.nlm.nih.gov/pubmed/12611233 |
⇧46 | ncbi.nlm.nih.gov/pubmed/20681463 |
⇧47 | ncbi.nlm.nih.gov/pubmed/8249977 |
⇧48 | ncbi.nlm.nih.gov/pubmed/12601352 |
⇧49 | researchgate.net/publication/264525127_Deconjugation_of_Bile_Salts_by_Bacteroides_and_Clostr idium |
⇧50 | ncbi.nlm.nih.gov/pubmed/15242494 |
⇧51 | ncbi.nlm.nih.gov/pubmed/8871245 |
⇧52 | ncbi.nlm.nih.gov/pubmed/14571751 |
⇧53 | ncbi.nlm.nih.gov/pubmed/8292482 |
⇧54 | ncbi.nlm.nih.gov/pubmed/9260801 |
⇧55 | ncbi.nlm.nih.gov/pmc/articles/PMC4602394/ |
⇧56 | ncbi.nlm.nih.gov/pmc/articles/PMC4041630/ |
⇧57 | ncbi.nlm.nih.gov/pubmed/16772842 |
⇧58 | ncbi.nlm.nih.gov/pubmed/4023615 |
⇧59 | ncbi.nlm.nih.gov/pubmed/7768612 |
⇧60 | ncbi.nlm.nih.gov/pubmed/25579140 |
⇧62 | ncbi.nlm.nih.gov/pubmed/20937045 |
⇧63 | ncbi.nlm.nih.gov/pubmed/10720113 |
⇧64 | ncbi.nlm.nih.gov/pubmed/12130888 |
⇧65 | ncbi.nlm.nih.gov/pubmed/19131813 |
⇧66 | ncbi.nlm.nih.gov/pubmed/26625948 |
⇧67 | ncbi.nlm.nih.gov/pubmed/16473946 |
⇧68 | ncbi.nlm.nih.gov/pubmed/24531544 |
⇧69 | ncbi.nlm.nih.gov/pubmed/26474702 |
⇧70 | ncbi.nlm.nih.gov/pubmed/28130067 |
⇧71 | ncbi.nlm.nih.gov/pubmed/15307955 |
⇧72 | ncbi.nlm.nih.gov/pubmed/15962294 |
⇧73 | ncbi.nlm.nih.gov/pubmed/12525500 |
⇧74 | ncbi.nlm.nih.gov/pubmed/23965429 |
⇧75 | ncbi.nlm.nih.gov/pubmed/24283351 |
⇧76 | ncbi.nlm.nih.gov/pubmed/24672410 |
⇧77 | ncbi.nlm.nih.gov/pubmed/18763284 |
⇧78 | ncbi.nlm.nih.gov/pubmed/12601352 |
⇧80 | ncbi.nlm.nih.gov/pubmed/24239723 |
⇧81 | ncbi.nlm.nih.gov/pubmed/23298440 |
⇧82 | ncbi.nlm.nih.gov/pubmed/7886400 |
⇧83 | ncbi.nlm.nih.gov/pubmed/9244859 |
⇧84 | ncbi.nlm.nih.gov/pubmed/1793485 |
Hormon wzrostu (somatotropina) jest hormonem niezbednym do wzrostu i rozwoju organizmu czlowieka. Posiada wiele korzysci zdrowotnych, jednak w nadmiarze, powoduje takze i problemy. W/w hormon syntetyzowany i wydzielany jest przez przedni plat przysadki w mozgu.
Wydzielanie hormonu wzostu kontrolowane jest glownie przez dwa hormony – hormon uwalniajacy GH(GHRH) oraz somatostatyne. GHRH stymuluje uwalnianie hormonu z krwi podczas gdy somatostatyna hamuje jego uwalnianie. Samo wydzielanie hormonu wzrostu odbywa się pulsacyjnie, a częstotliwość i intensywność impulsów zależy od wieku i płci. Moze on byc wydzialny nawet w doroslym zyciu juz po wzroscie ciala, pelniac inne wazne fizjologiczne funkcje. W okresie niemowlecym, wydzielanie GH jest niskie, ale ciagle wzrasta az do okresu dojrzewania, kiedy to wydzielanie w/w hormonu znacznie sie zwieksza, a zmniejsza w pozniejszym okresie dojrzewania i pozostaje juz stabilne do ok.30roku zycia. Nastepnie nastepuje linowy spadek wydzielania GH, az do poznego wieku starczego. W jajnikach GH łączy się ze swoistym receptorem w komórkach ziarnistych, tekalnych i komórkach ciałka żółtego, promując proces steroidogenezy i gametogenezy.
Pozytywne wlasciwosci hormonu wzrostu
Hormon wzrostu pozytywnie wplywa na gojenie sie zlaman kosci. Odgrywa takze wazna role w metabolizmie kosci i moze przyczyniac sie do zwalczenia osteoporozy poprzez utrzymanie gestosci mineralnej kosci co zapobiega zlamaniom spowodowanych osteoporoza.
Negatywne wlasciwosci Hormonu Wzrostu
Wydzielanie hormonu wzrostu zwieksza sie podczas niskich poziomow cukru we krwi.
Za wysokie poziomy hormonu wzrostu / GH powoduja opornosc na insuline. Prowadzi to do zmniejszenia zuzycia glukozy przez miesnie i wzrostu stezenia glukozy we krwi. Sa badania w ktorych wykazano, ze nadmiernie wysokie poziomy hormonu wzrostu prowadza do cukrzycy typu 2(jak i rowniez retinopatii cukrzycowej)
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
ncbi.nlm.nih.gov/pmc/articles/PMC3262362/
ncbi.nlm.nih.gov/pmc/articles/PMC3262362/
jci.org/articles/view/113673/scanned-page/745
ncbi.nlm.nih.gov/pmc/articles/PMC3262362/
ncbi.nlm.nih.gov/pubmed/12868124
jci.org/articles/view/103824/scanned-page/487
ncbi.nlm.nih.gov/pubmed/7854168
ncbi.nlm.nih.gov/pubmed/8548046
ncbi.nlm.nih.gov/pubmed/1891468
ncbi.nlm.nih.gov/pubmed/16444180
circ.ahajournals.org/content/92/2/262
ncbi.nlm.nih.gov/pubmed/7600659
ncbi.nlm.nih.gov/pubmed/7852519
ncbi.nlm.nih.gov/pubmed/7600659
ncbi.nlm.nih.gov/pmc/articles/PMC1234282/
ncbi.nlm.nih.gov/pmc/articles/PMC1501119/
ncbi.nlm.nih.gov/pubmed/19480608
ncbi.nlm.nih.gov/pubmed/20629339
ncbi.nlm.nih.gov/pmc/articles/PMC3917585/
ncbi.nlm.nih.gov/pmc/articles/PMC3917585/
ncbi.nlm.nih.gov/pubmed/10993598
ncbi.nlm.nih.gov/pubmed/20629339
ncbi.nlm.nih.gov/pubmed/10352397
ncbi.nlm.nih.gov/pubmed/1458019
ncbi.nlm.nih.gov/pubmed/1458019
ncbi.nlm.nih.gov/pubmed/10352397
ncbi.nlm.nih.gov/pmc/articles/PMC3870652/
ncbi.nlm.nih.gov/pubmed/8784075
ncbi.nlm.nih.gov/pubmed/12435897
ncbi.nlm.nih.gov/pubmed/12435897
ncbi.nlm.nih.gov/pmc/articles/PMC2439518/
ncbi.nlm.nih.gov/pubmed/11387232
ncbi.nlm.nih.gov/pubmed/8931648
ncbi.nlm.nih.gov/pmc/articles/PMC3183519/
ncbi.nlm.nih.gov/pmc/articles/PMC3183519/#ref1
scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962011000600015&lng=en&nrm=iso&tlng=en
ncbi.nlm.nih.gov/pubmed/18226732
ncbi.nlm.nih.gov/pubmed/10574477
ncbi.nlm.nih.gov/pubmed/23069955
ncbi.nlm.nih.gov/pubmed/16430706
ncbi.nlm.nih.gov/pubmed/11469476
ncbi.nlm.nih.gov/books/NBK27/
ncbi.nlm.nih.gov/pmc/articles/PMC3779461/
nature.com/eye/journal/v28/n11/full/eye2014216a.html
ncbi.nlm.nih.gov/pubmed/2135020
ncbi.nlm.nih.gov/pubmed/18174706
ncbi.nlm.nih.gov/pubmed/23894156
ncbi.nlm.nih.gov/pubmed/9196230
ncbi.nlm.nih.gov/pubmed/3053958
ncbi.nlm.nih.gov/pubmed/1806481
ncbi.nlm.nih.gov/pubmed/3053958
ncbi.nlm.nih.gov/pubmed/9671074
ncbi.nlm.nih.gov/pubmed/15157954
ncbi.nlm.nih.gov/pmc/articles/PMC329619/
ncbi.nlm.nih.gov/pubmed/10352397
ncbi.nlm.nih.gov/pubmed/20300016
ncbi.nlm.nih.gov/pubmed/2903866
ncbi.nlm.nih.gov/pubmed/3054432
ncbi.nlm.nih.gov/pubmed/10484056
ncbi.nlm.nih.gov/pmc/articles/PMC1188300/
ncbi.nlm.nih.gov/pubmed/3054432
ncbi.nlm.nih.gov/pubmed/18090659
ncbi.nlm.nih.gov/pubmed/12457419
ncbi.nlm.nih.gov/pmc/articles/PMC1188300/
ncbi.nlm.nih.gov/pubmed/8370132
ncbi.nlm.nih.gov/pubmed/7376793
ncbi.nlm.nih.gov/pubmed/999213
ncbi.nlm.nih.gov/pubmed/3893986
ncbi.nlm.nih.gov/pubmed/25466701
acnp.org/g4/GN401000095/CH.html
ncbi.nlm.nih.gov/pubmed/9064277
ncbi.nlm.nih.gov/pubmed/3054432
ncbi.nlm.nih.gov/pubmed/10484056
ncbi.nlm.nih.gov/pubmed/2888782
ncbi.nlm.nih.gov/pubmed/8071650
ncbi.nlm.nih.gov/pubmed/8284103
ncbi.nlm.nih.gov/pubmed/3893986
ncbi.nlm.nih.gov/pubmed/1327650
ncbi.nlm.nih.gov/pubmed/3053958
ncbi.nlm.nih.gov/pmc/articles/PMC1188300/
ncbi.nlm.nih.gov/pubmed/2135020
ncbi.nlm.nih.gov/pubmed/7854168
artnewsletter.pl/artykuly/5/1.php
ncbi.nlm.nih.gov/pmc/articles/PMC3821914/
ncbi.nlm.nih.gov/pubmed/26022460
ncbi.nlm.nih.gov/pubmed/19421410
okulistyka.com.pl/_klinikaoczna/index.php?strona=artykul&wydani
e=50&artykul=840
centredelavision.pl/badanie-kompleksow-komorek-zwojowych-gcc-w-centre-de-la-vision/
PQQ czyli pirolochinolinochinon (lub methoxatin) to składnik pokarmowy witaminopodobny, bardzo zbliżony do Koenzymu Q10 i witaminy K. Najbogatszym jego źródłem jest fermentowana soja natto. Inne źródłą jego pozyskiwania to natka pietruszki, zielona papryka, szpinak, marchew, kiwi, papaja, czy zielona herbata.
PQQ jest kofaktorem tzn, że pomaga enzymom wypełniać ich funkcję. Jest pewna klasa molekuł kofaktorowych, które transportują elektrony niezbędne do produkcji energii w mitochondriach komórek organizmu człowieka.
Głównymi kofaktorami transferującymi elektrony są: glutation, Koenzym Q10, FAD, witamina C oraz NAD. Ogólnie problemy z mitochondriami jest udowodniony w takich chorobach jak Stwardnienie rozsiane, stwardnienie zanikowe boczne, padaczka, cukrzyca typu 2, problemy kardiologiczne, Autyzm, Borelioza i koinfekcje.
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
ncbi.nlm.nih.gov/pubmed/20482893
ncbi.nlm.nih.gov/pubmed/18937164?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_Discovery_RA&lin
kpos=5&log$=relatedreviews&logdbfrom=pubmed
ncbi.nlm.nih.gov/pubmed/15639020
pyrroloquinoline-quinone.com/pqq-info/pqq-rich-food/
Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res. 2010 Jul 16.
pl.wikipedia.org/wiki/Kom%C3%B3rka_Schwanna
pl.wikipedia.org/wiki/Receptor_NMDA
en.wikipedia.org/wiki/PTPN1
Stites T, Storms D, Bauerly K, et al. Tchaparian. Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J Nutr. 2006
Feb;136(2):390-6.
Steinberg F, Stites TE, Anderson P, et al. Pyrroloquinoline quinone improves growth and reproductive performance in mice fed chemically defined diets. Exp
Biol Med (Maywood). 2003 Feb;228(2):160-6.
Bauerly KA, Storms DH, Harris CB, et al. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the
mouse and rat. Biochim Biophys Acta. 2006 Nov;1760(11):1741-8.
Stites TE, Mitchell AE, Rucker RB. Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr. 2000 Apr;130(4):719-27.
Nunome K, Miyazaki S, Nakano M, Iguchi-Ariga S, Ariga H. Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes
in oxidative status of DJ-1. Biol Pharm Bull. 2008 Jul;31(7):1321-6.
Hirakawa A, Shimizu K, Fukumitsu H, Furukawa S. Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem Biophys Res
Commun. 2009 Jan 9;378(2):308-12.
Yamaguchi K, Sasano A, Urakami T, Tsuji T, Kondo K. Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro
and in vivo. Biosci Biotechnol Biochem. 1993 Jul;57(7):1231-3
Murase K, Hattori A, Kohno M, Hayashi K. Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem Mol Biol Int.
1993 Jul;30(4):615-21.
Zhou L, Too HP. Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth. PLoS One. 2011;6(6):e21680
Zhu BQ, Zhou HZ, Teerlink JR, Karliner JS. Pyrroloquinoline quinone (PQQ) decreases myocardial infarct size and improves cardiac function in rat models of
ischemia and ischemia/reperfusion. Cardiovasc Drugs Ther. 2004 Nov;18(6):421-31.
Zhu BQ, Simonis U, Cecchini G, et al. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat
model of ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2006 Jun;11(2):119-28.