Jak naprawić uszkodzony mózg – N.Doidge to książka, którą poleciła mi zakupic,przeczytać i sprzedać(jej 🙂 ) pewna moja znajoma, która często ma nosa do dobrych książek. Faktycznie i tą książkę czytało mi się bardzo przyjemnie w sumie można powiedzieć, że jednym tchem gdyż stosowałem u siebie większość z technik opisywanych przez autora (osteopatia, zimny laser LLLT czy też neurofeedback). Z tego co wiem autor podróżował przez spory okres czasu odwiedzając wszystkie miejsca które opisuje i poznając większość scharakteryzowanych przez siebie osób także jest to książka na faktach, o urządzeniach i technikach które faktycznie istnieja i tak naprawdę każdy może z nich skorzystać. Standardowo spisałem najważniejsze kwestie z przeczytanej książki, którymi się z Tobą chętnie podzielę.
– Neuron otrzymuje sygnał pobudzający lub hamujący. Gdy otrzymuje wystarczająco ilość sygnałów pobudzających to uruchamia własny sygnał, gdy hamujących to prawdopodobnie zareaguje.
– Aksony rozdzelone są synapsami
– Za każdym razem kiedy czegoś się uczysz zostaje wzmocnione połączenie synaptyczne między neuronami
– Ból fantomowy kończyn to ból po utracie kończyny – odczuwany ból daje wrażenie jakby takowa kończyna dalej z Tobą była
– Neurony w dłoniach powiązane są z neuronami w mózgu
– Przy utracie palca (przykładowo) inne obszary móżgu reagują na odczucia niż innych elementów ciała
– Można walczyć z bólem (redukować go) poprzez wizualizowanie go sobie (wyobrażasz sobie że go nie ma lub że znika). Można tak całkowicie wyleczyć ból.
– Stosuje techniki wizualizacji mózgu bez bólu
– Taką samą metodę stosuję się w hipnozie – może wyobrazić sobie, że miejsca bólu w móżgu kurczą się
– Potwierdzono w badaniach, że patrzenie na pomniejszony obszar bólu zmniejsza jego siłę w rzeczywistości
– Takie wobrażenie czy zastosowanie lustra zmniejszającego wielkość palców redukuje i to znacząco ból w artretyzmie
– Efekt placebo działa w przypadku bólu w 30% przypadków
– Placebo pobudza układ opioidowy
– Moskowitz stosuje techniki neuroplastyczne do redukcji bólu (wizualizacje obszarów mózgu) – poprawa następuje po paru tygodniach
– Syntetyki opioidowe przestają działać po krótkim czasie, potrzeba większej dawki co doprowadza do 'przełomowego bólu” (ludzie stają się bardziej wrażliwi na ból) i skutków ubocznych
– Pobudzenie GDNF (mózgowy czynnik wzrostu nerwów) możę byćpomocne w Parkinsonie (przyczynia się do plastycznych zmian w mózgu i przetrwania neuronów wytwarzających dopaminę.
– Ćwiczenia fizyczne pobudzają GDNF
– Większość osób z Parkinsonem przestaje chodzić w 8-10 lat po diagnozie
– 80% dopaminy skoncentrowanej jest w istocie czarnej móżgu w jądrze podstawy
– Lewo dopa osłąbia symptomy w Parkinsonizmie
– Dopiero spadek dopaminy o 80% powoduje symptomy
– Możliwe, że pestycydy wywołują PArkinsonizm
– Lewodopa ma pałno skutków ubocznych w tym dyskinezę
– Nadmiar dopaminy może powodować schizofrenię
– Lewo dopa działa ok 4-6 lat – później ryzyko dyskinezy wzrasta (wraz z dawką lewodopy), leczy ona tylko symptomy choroby
– Aktywność fizyczna opóźnia symptomy pląsawicy Huntingtona
– Aktywność fizyczna/ szybkie chodzenie znacząco poprawia stan zdrowia w Parkinsonie
– Bardzo wczesne objawy Parkinsona to drżenie, powolne ruchy, sztywność, niestabilność postawy
– Mikrografia (powolne ruchy) i zaparcia to bardzo wczesne objawy, któe też są łączone z PArkinsonizmem
– Jeden z bohaterów tej książki także sypiał bardzo mało. Brzydkie pismo, niezdolność do oczyszczania gardła, ciało sztywnieje, może pojawić się zespoł niespokojnych nóg – to symptomy Parkinsonizmu.
– Pepper stosował techniki podnoszenia czy robienia rzeczy inaczej niż robił to wcześniej przez co zminimalizował u siebie drżenie rąk w Parkinsonie
– Uszkodzenie jądra podstawowego powoduje u niego brak możliwości koncentracji na 2-3 rzeczach jednocześnie
– Nauczył się pobudzać inne elementy móżgu pomijające jądro podstawowe
– To w jądrze podstawowym brakuje dopaminy
– Ciągła stymulacja różnych rejonów mózgu poprawiła u niego technikę chodzenia
– ĆWiczenia fizyczne hamują chorobę Parkinsona
– Leki na Parkinsona mogą powodować nowe zaburzenia ruchu i halucynację
– Aktywność fizyczna (np.już nawet chodzenie) zwiększa ilość neuronów w hipokampie
– Pląsawica Huntingtona to za dużo glutaminy w mózgu, która powoduje zaburzenia ruchu i demencję. Ćwiczenie w tym chodzenie opóźniają tą chorobę
– 6-OHD to substancja, któa przyczynia się do Parkinsona i wykrywana jest u ludzi z tą chorobą
– Sport chroni system dopaminowy
– NGF i BDNF to czynniki neurotroficzne, które tworzą połączenia w mózgu
– GDNF jest obniżone w istocie czarnej w Parkionsonie tak samo jak BDNF
– SZczury, które nie mogą biegać mają niskie poziomy BDNF
– W jednym badaniu u człowieka ze sparaliżowaną ręką, włożono sprawną rękę w gips, wymusiło to ćwiczenie sparaliżowanej ręki aż uzyskało się nad nią kontrolę.
– Dopamina jest niezbędna do ruchu jak i do motywacji
– Ćwiczenia aerobowe poprawiają przetwarzanie informacji, powodują zwiększenie objętości hipokampu, polepszenie pamięci. Zmniejszają ryzyko demencji i Alzheimera
– W śnie zdolność mózgu do pozbywania się neurotoksyn jest 10x większa
– Poprzez płyn mózgowo-rdzeniowy wydalane są toksyny
– Słońce i światło rozkłąda billurbinę, leczy żółtaczkę u noworodków
– W XIX wieku czarną ospę leczono czerwonym kolorem (czerwone koce, kule, zabawki dla dzieci)
– Siatkówka przesyłą informację do SCN(jądro nadskrzyżowaniowe) które pobudza szyszynkę do produkcji melatoniny
– Zimny laser pobudza rozwój tkanki kolagenowej, działa na egzemę, łuszczycę, pułpaśca, blizny(poprawia ich wygląd), opryszczkę
– Laser miękki może zregenerować stawy w chorobie zwyrodnieniowej (przywraca, regeneruje, odtwarza chrząstkę stawową) – (PD: potwierdzam)
– bardzo pomocny przy problemach kognitywnych, urazach móżgu
– Laserowa akupunktura przywraca mobilność po udarach
– Pień mózgu odpowiada za równowagę ciała i chód. Jego uszkodzenie może wpływać na nadwrażliwość na dzwięki
– Lasery miękkie polepszają cyrkulację i hamują stan zapalny, działają bezpośrednio na mitochondria, pobudzają angiogenezę, do komórek dostarczone jest więcej tlenu. Laser uwalnia serotoninę, endorfiny, acetylocholinę
– Ręczne lasery używane są za krótko, ponadto dawka, długość fali są zawsze dobierane indywidualnie
– Profesjonalne lasery lecznicze to koszt kilku tyś dolarów
– Opisuje przypadki poprawy słuchu, ustania zapalenia zatok
– Lasery Kohna redukują ból w endometriozie oraz polepszają problemy z zaparciami (PD: pewnie poprzez pobudzenie serotoniny)
– Wyleczył nowotwór skóry tym typem lasera
– Długie używanie lasera na jednej sesji powoduje wejście organizmu w tryb pracy układu przywspółczulnego czyli relaksu i obniżenia poziomu kortyzolu
– Światło lasera poprawa w regeneracji nerwów funkcje aksonów i mieliny, zmniejsza tkankę bliznowatą
– Laser wspomaga gojenie się rdzenia kręgowego, pomaga w mechanicznych uszkodzeniach móżgu czy też w udarze (odrazu po zdarzeniu)
– Laser wykorzystywany jest także w infuzjach dożylnych (zwłaszcza do infekcji, obniża nadmiernie pobudzone białe krwinki)
– Opisuje przypadek wyleczenia wrzodów poprzez umieszczenie w endoskopie lasera o niskiej mocy
– Laser obniża poziomy amyloidu beta
– Laser tłumi stan zapalny mózgu
– Połączenia między neuronami zwiększa neurotroficzny czynnik móżgu BDNF a ten aktywowany jest laser
– Myśli wpływanją na funkcje mięśni, radość = postawa wyprostowana i rozluźnione kończyny, złość = zaciśnięte pięści i zęby, strach = napoięte zginacze i mięśnie brzucha
– Niemowlęta przewracają się na bok gdyż długo się patrzą na jakiś obiekt, uczą się siadacz poprzez wkładanie stóp do ust
– Spastyczność mięśni to mięśnie o zbyt dużym napięciu, które za szybko się kurczą. Uruchamiają się tylko neurony pobudzające co powoduje nadmierne napięcie
– Problem z orientacją czy czytaniem (nauką czytania) to problem z rozróżnieniem lewej i prawej strony
– Opisuje biografię Feldenkraisa – fizyka, fizjoterapeuty, genialnego osteopaty
– Dzieco które ssie każdy palec tworzy automatyczniee mapę mózgu, dzieci z porażeniem mózgowym tego nie robią
– Móżdżek kontroluje uwagę, myśli, ruch i równowagę
– Zablokowanie przepływu płynu mózgowo-rdzeniowego może doprowadzić do wodogłowia (tworzy się wtedy opuchlizna)
– Wg.uczennicy Feldenkraisa operacja zeza rozbieżnego powoduje, że nigdy już oczy nie będą prawidłowo funkcjonować
– Metoda Feldenkraisa oraz metoda Anat Baniel (są terapeuci w Polsce)
– Bates to wybitny okulista, który okdyrł, że na ostrość wzroku wpływ ma 6 mięśni zewnętrznych otaczających oko. Wydłużają lub skracają one gałkę oczną
– Oko wykonuje niewidzialne ruchy, jeśli zostaną one zahamowane to człowiek traci wzrok
– Bates stworzył ćwiczenia relaksujące oczy któe poprawiają wzrok
– Krótkowzroczność pojawia się od nadmiernego patrzenia na blisko położone przedmioty (np.czytanie), 70% azjatów którzy dużo czytają ją mają, kiedyś
okulary były raczej rzadkością, presja czytania i nauki spowodowała lawinę krótkowzroczności
– Nieodwrócenie krótkowzroczności prowadzi do ryzyka jaskry, AMD, zaćmy.
– Położenie się na plecach, kolana skierowane w sufit, stopy płasko na podłodze, ręce na brzuchu – rozluźnia to napiętą szyję i odcinek lędzwiowy
– Siedzenie pod kątek 45% do słońca mając zamknięte oczy przez 10-15min popołudniami przyczynia się do poprawy wzroku
– Przykrycie oczu dłońmi powoduje 100% i zasłonięcie przed światłem i tym samym relaksację. Uruchamia się układ przywspółczulny
– Osoby które mają AMD wysilają wzrok aby coś zobaczyć co powoduje napięcie szyji i górnych partii ciała
– U osób z zezem mózg probując wyeliminować podwójne widzenie przestaje przetwarzać informację z jednego oka doprowadzając do jego rozleniwienia (ambliopia). Takim osobom pomagał Webber – uczeń Feldenkraisa
– Otx2 to białko które wysyłane jest z siatkówki do mózgu w celu wejścia go w formę plastyczną która pozwala na szybsze uczenie się i zmiany plastyczne
– Laboratorium komunikacji dotykowej i neurorehabilitacji (gdzieś w USA) posiada na swoim wyposażeniu urządzenia (płytki pobudzające układ nerwowy na języku, wspomagające neuroplastyczność mózgu)
– Opisał przypadek człowieka ze stwardnieniem rozsianym, u którego doszło do remisji choroby dzięki tej płytce
– Mózg starego człowieka także jest plastyczny
– Dzięki płytce na jeżyku niewidomi byli w stanie widzieć kontury przedmiotów i ludzi
– Antybiotyki mogą uszkodzić narząd równowagi w uchu powodując niepełnosprawność
– Jądro przedsionkowe mózgu przetwarza równowagę . Urządzenie w/w laboratorium takżę radziło sobie z odzyskaniem równowagi. Po 2 latach używania płytki mózg się przeorganizował i nie trzeba było już jej używać
– Możliwe jest odzyskanie funkcji układu nerwowego przy jego 98% uszkodzeniu
– Powyższe urządzenie redukowało też 'szumy neurologiczne’ powodując poprawę w koncentracji, śnie itp.
– Urządzenie stymulujące na języku nazywa się PONS (wszystkie inne stymulatoru mózgu dostępne przez medycynę konwencjonalną muszą być chirurgicznie wszczepiane)
– PONS jest świetnym urządzeniem w przypadku choroby Parkinsona, po udarze, po wstrząśnieniu mózgu
– W stwardnieniu rozsianym poprawia nie tylko równowagę, ale i poprawia trzymanie moczu czy poprawę snu
– Osoby które doznały urazu w różnych częściach ciała głowy mogą mieć podobne objawy
– Urządzenie PONS najlepiej używać w trakcie medytacji (w czasie kiedy wyciszasz mózg)
– Jedną z teori związanej z chorobą Parkinsona jest wniknięcie patogenu z żołądka do nerwó układu pokarmowego których dochodzi do nerwu błędnego a następnie do mózgu
– Urządzenie PONS powoduje wzrost ilości synaps, rozbudowywuje zwyrodniałe obszary móżgu
– Spekuluje (autor PONS) że PONS pobudza komórki macierzyste w mózgu.
– Stymulacja nerwu błędnego wyleczyła RZS i SM(robi to właśnie PONS)
– Paul Madaule wykorzystuje muzykę (przeważnie Mozarta) do leczenia ludzi (opisany przypadek autyzmu dziecka). Wplata w utwór muzyczny swój głos, jednak jest on nieco zniekształcony
– Ucho dojrzewa do pełnej sprawności w połowie ciąży
– Opisano historię Alfreda Tomatisa
– Ucho wpływa na postawę ciała (pochylasz się w stronę w którą lepiej słyszysz)
– Śpewacy operowi mają problem z uszami (słuchem) a nie z głosem (głuchną od własnego głosu który dochodzi do 140dB
– Metody Tomatisa uzdrawiają głos operzystów poprzez odpowiedni trening słuchu
– Dzięki wynalezieniu elektronczego ucha mógł odblokować wysokie częstotliwości u ludzi
– Słabe mięśnie ucha = możliwość słyszenia tylko niskich częstotliwości
– Dzieci które przeszły infekcje uszne mają hipotonię (niskie napięcie mięśni usznych). Słyszą one szum, zbyt wiele dzwięków oraz/lub przytłumione dzwięki
– 95% osób praworęcznych przetwarza słuch w lewej półkuli
– 70% leworęcznych w lewej i 15% w prawej. 15% w obu
– Prawe ucho słyszy więcej wyższych częstotliwości
– na początku terapii Tomatisa sluchasz muzyki Mozarta z podkreślonymi wysokimi dzwiękami.
– Opisuje historie chłopaka z niedotlenieniem mózgu, z obniżoną odpornością, po szczepieniach łączonych, który miał obniżone napięcie mięśniowe
(na imie miał Will, zajął nim się Paul – uczeń Tomatisa)
– Ucho pozwala dzieciom na przejście z pozycji raczkującej do stania i chodzenia bez upadania
– Dziecko w fazie płodowej uczy się rozpoznawać głos matki
– W elektronicznym uchu używany jest przefiltorwany głos matki (brzmiał tak jak w macicy)
– Elektroniczne ucho nosi nazwę Lift
– Utrata dopływu tlenu do móżgu powoduje zmniejszenie liczby gałęzi nerwowych i połączeń synaptycznych
– Chustanie na chuśtawce podczas używania elektronicznego ucha stymuluje mowę (udowadnia to zależność narządu przedsionkowego i ślimaka)
– Opisał przypadek dziecka które w wieku 18miesięcy dostało grypy żołądkowej(poszczepiennej) po której straciło kontakt wzrokowy (i wiele innych problemów) – dostał diagnozę autyzm
– Paul Maduele twierdzi, że terapia Tomatisa może pomóc 2/3 dzieci z autyzmem – im dziecko młodsze tym lepiej
– Opisano kilka przypadków autyzmu w książce
– U dzieci autyzm przeważnie diagnozowany jest między 2-3 rokiem życia
– We krwii pępowinowej można znaleźć obecnie 200 toksyn co doprowadzić może do stanów zapalnych u dziecka
– W stanie zapalnym neurony nie komunikują się z mózgiem
– Wykazano, że największy stan zapalny występuje w móźdżku autysty, który ma bliski związek z układem przedsionkowym na który działa terapia dzwiękiem
– 23% dzieci z ASD ma przeciwciała przeciwko komórkom mózgowym (pochodzą one od ich matek), zdrowe matki mają tylko w 1% przypadków takie przeciwciała
– Nadmiernie aktywne komórki glejowe powodują słaby dopływ krwii do neuronów a te nie mając dysfunkcje powodują „szum mózgu” (są nadmiernie pobudzone)
– Pobudza je glutaminian (substancja pobudzająca neurony) w dużych ilościach co właśnie przyczynia się do szumiącego mózgu
– Gdy zestresowane dziecko usłyszy głos matki, wydziela się oksytocyna (powoduje ona spokój, ciepły nastrój, zwiększa czułe uczucia i zaufanie, tworząc więzi międzyludzkie. W ASD jest ona wyższa niż normalnie
– Porges wykazał, że układ przywspółczulny wyłącza reakcję walcz i uciekaj i włącza „układ zaangażowania społecznego” oraz mięśnie ucha środkowego, pozwalająć ludziom słuchać i komunikować się
– Osoby z ASD które przeszły infekcje uszne mają problemy w nauce oraz opóźnienie mowy. Nie mogą dostroić się do ludzkiej mowy bo nie umieją używaćucha środkowego by stłumić niskie częstotliwości. Gdy niskie dzwięki mają pełną głośność, maskują wyższe dzwięki mowy co powoduje, że dzieci są nadwrażliwe na dzwięki, szczególnie np.na odkurzacz czy alarm.
– Patrząc na mimikę twarzy można odczytać czy ktoś cłucha (mięśnie twarzy w ASD są bez wyrazu)
– Opisano przypadek dziecka z ASD, któego pobudzał cukier i gluten, użyto u niego urządzenia iLS(następca urządzenia LIFT)
– Ruch wytwarza dopaminę -> motywuje i zwiększa koncentrację
– Terapia dzwiękiem możę poprawić obszary podkorowe zaangażowane w przetwarzanie informacji
– Osoby z ADHD mają mniejszy móżdżek. Jak ich stan się poprawia, móżdżek rośnie.
– Terapia dzwiękiem stymuluje nerw błędny
– Opisał przypadek dziewczyny, która miała zaburzenia przetwarzania sensorycznego. W jej przypadku urządzenie iLS i huśtawka bardzo pomogły (plus inne zabiegi jak muskanie skóry)
– Dzwięki mogą zarówno usypiać jak i pobudzać śpiewającego jak i słuchającego
– Muzyka jak i światło (stroboskopu) mogą wywoływać atak epilepsji
– Muzyka podnosi dopaminę
– Terapie Paula Madoule dzwiękiem i muzyką poprawia także dotlenienie móżgu co jest pomocne też np. w zespole Downa
– Opisuje przypadek chłopca bez jednej półkuli mózgowej, który odzyskał kontrolę nad niedowładami połowy ciała oraz zaczął normalnie mówić
– Techniki słuchania muzyki Tomatisa poprawiają napięcie mięśniowe
– Trening gry na instrumecie prowadzi do zmian w mózgu, które mogą polepszyć zdolności werbalne i matematczne oraz nieznacznie zwiększyć IQ
– Autor sugeruje, że autystykom mógłyby pomóc lasery o małej mocy i PONS (PD:zdecydowanie polecam z własnej praktyki obydwa urządzenia)
– Prąd elektryczny lub pole elektromagnetyczne przyspiesza zrastanie się kości
– Neurofeedback to połączenie człowieka pod EEG i wyświetlanie fal na monitorze
– Osoby z ADD i ADHD mają mniej spokojnych i skupionych fal beta i więcej fal theta (pojawiają się one wtedy gdy zasypiamy)
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Refluks żołądkowo przełykowy GERD czy też NERD (ten w którym nie doszło jeszcze do nadżerek) to przypadłość bardzo częsta w obecnych czasach. Jak sam zobaczysz wynika ona naprawde z bardzo wielu czynników – jeszcze nigdy nie udało mi sie wtrafić z sugestią u kogoś z refluksem aby zastosował tylko 1 preparat lub interwencje co cofneło GERD (no dobra – nie licze po prostu zastosowania octu jabłkowego w kapsułkach przed lub po posiłku – to jest po prostu zbyt łatwe i się nie liczy). Objawów które wskazują na refluks jest naprawdę sporo, tak samo jak i rzeczy, które do niego doprowadzają. Ogólnie nie spotkałem jeszcze osoby która doprowadziła do choroby refluksowej poprzez tylko 1 niezdrową czynność – zawsze jest to kumulacja niezdrowych praktyk, medykamentów czy ogólnie szeroko pojętego stylu życia. Poza tym, jest też kilka podtypów refluksu – kwaśny,zasadowy czy też np. żołądkowo-przełykowo-dwunastniczy(z dwunastnicy). W tym ostatnim dochodzi do bardzo nie przychylnego że tak powiem oddziaływania kwasów żołciowych na gardło/przełyk co znacznie pogarsza leczenie samego refluksu. Chciałbym także zwrócić uwagę na stosowanie inhibitorów pompy protonowej(IPP) które są obecnie wciskane na każdym kroku praktycznie z automatu – nie są to leki które są w stanie wyleczyć jakąkolwiek forme refluksu – jeśli komukolwiek udało się dzięki nimi wyleczyć chorobę refluksową to napewno był to zbieg okoliczności. Spotkałem się już osobami które są od nich uzależnione, biorąc je już wiele lat – doprowadziły one u nich do masy problemów zdrowotnych które wypunktowałem(nie wszystkie) w tym artykule. Zwróciłem także uwagę na przełyk Barretta oraz na gruczolakoraka przełyku które są ostatnimi stadiami refluksu. Zreszta – po co mam Ci dalej ogólnie omawiać tą chorobę skoro możesz przeczytać praktycznie wszystko o niej w szczegółach poniżej?Zarezerwuj sobie ok.godziny na ten artykuł …miłego czytania. Najważniejsze – nie stresuj się podczas lektury bo to także doprowadza do GERD czy NERD :-). I jeszcze jedno – bsam też miałem refluks przełykowy – jak sobie z nim poradziłem?wzmianka na samym końcu w podsumowaniu.
2)sci-hub.tv/10.1097/MCG.0000000000000439
(174)www.advances.umed.wroc.pl/pdf/2013/22/3/303.pdf)
(295)sci-hub.tv/10.1097/01.NPR.0000431881.25363.84)
Jak zauważyłeś twardych dowodów,wątków,poszlak i wskazówek na temat refluksu jest lekko mówiąc multum. Najważniejsze, abyś odrzucił to co Ciebie na pewno nie dotyczy i zainteresował się potencjalnymi problemami o których nie wiedziałeś, a doprowadziły u Ciebie do choroby refluksowej. Wiem, że ten artykuł nie jest kompletny gdyż nie porusza tematyki receptorów mGlu, nerwu błędnego i jego modulacji(regulacji), leczenia infekcji typu SIBO, hormonu VIP, greliny, leptyny,układu endokanabinoidowego, insulinooporności, hormonu CCK,zaparć czy problemu z nadmierną glukozą, nadmiernym pobudzeniem komórek tucznych czy też z kluczowymi organami takimi jak wątroba i nerki a nawet infekcji pasożytami – wszystko to ma konkretny wpływ na refluks – mało tego, zaburzenia każdego z tych elementów powodują GERD czy też NERD jak i doprowadzają w późniejszym czasie do gruczolakoraka przełyku czy też przełyku Barretta. Pamiętaj też, że praca zmianowa na nockach totalnie rozwala naturalne wytwarzanie melatoniny a ta substancja jest kluczowa w utrzymaniu zdrowia układu pokarmowego. Nie mogę w 1 artykule omówić 15 bardzo rozbudowanych tematów bo zajełoby mi to nie 8 tygodni a minimum 12 miesięcy jak nie więcej. A właśnie -artykuł o refluksie jest najdłuższym i najobszerniejszym artem na tym blogu – przejżałem prawie 40tyś badań na ten temat a literatura która cokolwiek wprowadza do tego tematu to prawie 800 pozycji. Jeśli udało Ci się dotrwać do przeczytania moich wypocin do końca byłbym dozgonnie wdzieczny, jeślibyś docenił moją pracę oraz czas i udostępnił ten artykuł u siebie na facebooku bo wtedy wiem, że dotrę do dużej grupy odbiorców,którzy mogą mieć problem z popularną zgagą / refluksem. Dzięki z góry.
Jakiś czas temu miałem problem refluksowy zawsze kiedy to bywałem w pracy poza granicami PL. Miałem do dyspozycji łazienkę w której na uszczelkach była pleśń – przez to bardzo szybko doszło do mnie u kandydozy (co jest normalne), pleśń usunąłem ale na nic to sie zdało gdyż i tak jakieś małe ulości pozostały na uszczelkach których nie byłem w stanie dostrzeć wzrokiem. Ponadto piłem napoje gazowane(rzadko bo rzadko …raz na 2 dni i to jeszcze w puszcce) ze względu na stres. Już po samym odłożeniu gazowanych, odłożeniu wszystkiego co ma cukier, nabiału(kluczowe,bieda w pracy także jadałem prawie wszystko) i dołożeniu(moim zdaniem najważniejsze) melatoniny liposomalnej nalot żołty(zatem kwasu żołądkowego) z rana kiedy się budziłem znikł. Zatem nie natrudziłem się za bardzo tak jak musze się namęczyć z niektórymi osobami które do mnie piszą a które mają chorobę refluksową …
Do przejżenia w przyszłości
sci-hub.tv/10.1038/nrd2444
sci-hub.tv/10.1517/13543784.12.1.39
sci-hub.tv/10.1159/000343975
sci-hub.tv/10.1097/MCG.0b013e318169021d
ncbi.nlm.nih.gov/pubmed/17526179
sci-hub.tv/10.1016/j.tips.2011.02.003
ncbi.nlm.nih.gov/pubmed/16047559
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB gdzie czasami wrzucam dodatkowe newsy nie publikowane na blogu https://www.facebook.com/zdrowiebeztajemnic
Literatura
⇧1, ⇧2 | sci-hub.tv/10.1097/MCG.0000000000000439 |
---|---|
⇧3 | sci-hub.tv/10.1046/j.1365-2168.1998.00780.x |
⇧4 | ncbi.nlm.nih.gov/pubmed/24151378 |
⇧5 | ncbi.nlm.nih.gov/pubmed/20461951 |
⇧6 | ncbi.nlm.nih.gov/pubmed/15366675 |
⇧7 | ncbi.nlm.nih.gov/pubmed/2057738 |
⇧8 | ncbi.nlm.nih.gov/pubmed/15588798 |
⇧9 | ncbi.nlm.nih.gov/pubmed/1882789 |
⇧10 | ncbi.nlm.nih.gov/pubmed/1926953 |
⇧11 | ncbi.nlm.nih.gov/pubmed/3414086 |
⇧12 | sci-hub.tv/10.1111/j.1600-051X.2009.01494.x |
⇧13 | ncbi.nlm.nih.gov/pubmed/21860819 |
⇧14 | ncbi.nlm.nih.gov/pubmed/18205259 |
⇧15 | ncbi.nlm.nih.gov/pubmed/26739854 |
⇧16 | ncbi.nlm.nih.gov/pubmed/22277344 |
⇧17 | ncbi.nlm.nih.gov/pubmed/25780309 |
⇧18 | ncbi.nlm.nih.gov/pubmed/22314391 |
⇧19 | ncbi.nlm.nih.gov/pubmed/27527893 |
⇧20 | sci-hub.tv/10.1002/jcp.26136 |
⇧21 | ncbi.nlm.nih.gov/pubmed/6608226 |
⇧22 | pl.wikipedia.org/wiki/Glukagon |
⇧23 | ncbi.nlm.nih.gov/pubmed/14669337 |
⇧24 | ncbi.nlm.nih.gov/pubmed/6823187 |
⇧25 | ncbi.nlm.nih.gov/pubmed/19040020 |
⇧26, ⇧432 | ncbi.nlm.nih.gov/pubmed/18502208 |
⇧27 | ncbi.nlm.nih.gov/pubmed/18779468 |
⇧28 | journals.viamedica.pl/eoizpm/article/download/25951/20761 |
⇧29 | ”Marta Dąbrowska, Dorota Szydlarska, Ewa Bar-Andziak Katedra i Klinika Chorób Wewnętrznych i Endokrynologii Warszawskiego Uniwersytetu Medycznego Adiponektyna a insulinooporność i miażdżyca” |
⇧30 | ncbi.nlm.nih.gov/pubmed/21845377 |
⇧31 | ncbi.nlm.nih.gov/pubmed/19120901 |
⇧32 | ncbi.nlm.nih.gov/pubmed/21848629 |
⇧33 | ncbi.nlm.nih.gov/pmc/articles/PMC3228988/ |
⇧34 | ncbi.nlm.nih.gov/pubmed/22060288 |
⇧35 | ncbi.nlm.nih.gov/pubmed/24961118 |
⇧36 | ncbi.nlm.nih.gov/pubmed/9040897 |
⇧37 | ncbi.nlm.nih.gov/pubmed/28883961 |
⇧38 | ncbi.nlm.nih.gov/pubmed/23229594 |
⇧39 | ncbi.nlm.nih.gov/pubmed/23083982 |
⇧40 | ncbi.nlm.nih.gov/pubmed/25573720 |
⇧41 | ncbi.nlm.nih.gov/pubmed/20733935 |
⇧42, ⇧45 | ncbi.nlm.nih.gov/pubmed/21063481 |
⇧43, ⇧541, ⇧542 | ncbi.nlm.nih.gov/pmc/articles/PMC3091156/ |
⇧44 | ncbi.nlm.nih.gov/pubmed/21532161 |
⇧46 | ncbi.nlm.nih.gov/pubmed/19958309 |
⇧47 | ncbi.nlm.nih.gov/pubmed/23774797 |
⇧48 | ncbi.nlm.nih.gov/pubmed/21318998 |
⇧49 | ncbi.nlm.nih.gov/pubmed/17845694 |
⇧50, ⇧162 | sci-hub.tv/10.1007/s00467-011-1983-x |
⇧51 | ncbi.nlm.nih.gov/pubmed/26854251 |
⇧52 | ncbi.nlm.nih.gov/pubmed/8881984 |
⇧53 | ncbi.nlm.nih.gov/pubmed/22875307 |
⇧54 | ncbi.nlm.nih.gov/pubmed/3632023 |
⇧55 | sci-hub.tv/10.1111/j.1468-1293.2009.00807.x |
⇧56 | ncbi.nlm.nih.gov/pubmed/10443906 |
⇧57 | sci-hub.tv/10.1111/j.1572-0241.2002.05772.x |
⇧58 | ncbi.nlm.nih.gov/pubmed/21485512 |
⇧59, ⇧103 | jpp.krakow.pl/journal/archive/12_11/pdf/591_12_11_article.pdf |
⇧60 | ncbi.nlm.nih.gov/pubmed/19525872 |
⇧61 | ncbi.nlm.nih.gov/pubmed/19405255 |
⇧62 | ncbi.nlm.nih.gov/pubmed/18949531 |
⇧63 | ncbi.nlm.nih.gov/pubmed/27840365 |
⇧64 | ncbi.nlm.nih.gov/pubmed/11219528 |
⇧65 | ncbi.nlm.nih.gov/pubmed/17298766 |
⇧66 | ncbi.nlm.nih.gov/pubmed/24907504 |
⇧67 | ncbi.nlm.nih.gov/pubmed/21586173 |
⇧68 | ncbi.nlm.nih.gov/pubmed/12702981 |
⇧69 | ncbi.nlm.nih.gov/pubmed/28397447 |
⇧70 | ncbi.nlm.nih.gov/pubmed/28437356 |
⇧71 | ncbi.nlm.nih.gov/pubmed/8783522 |
⇧72 | ncbi.nlm.nih.gov/pubmed/16332488 |
⇧73 | ncbi.nlm.nih.gov/pubmed/9058468 |
⇧74 | ncbi.nlm.nih.gov/pubmed/26255560 |
⇧75 | ncbi.nlm.nih.gov/pubmed/8338415 |
⇧76 | ncbi.nlm.nih.gov/pubmed/18592151 |
⇧77, ⇧79 | ncbi.nlm.nih.gov/pubmed/18475336 |
⇧78 | ncbi.nlm.nih.gov/pubmed/3995239 |
⇧80 | ncbi.nlm.nih.gov/pubmed/16036501 |
⇧81 | ncbi.nlm.nih.gov/pubmed/8237089 |
⇧82 | ncbi.nlm.nih.gov/pubmed/6989439 |
⇧83 | ncbi.nlm.nih.gov/pubmed/1565224 |
⇧84 | ncbi.nlm.nih.gov/pubmed/3534050 |
⇧85, ⇧113, ⇧114 | sci-hub.tv/10.1016/j.gtc.2016.02.003 |
⇧86 | ncbi.nlm.nih.gov/pubmed/16622332 |
⇧87 | ncbi.nlm.nih.gov/pubmed/14722388 |
⇧88 | ncbi.nlm.nih.gov/pubmed/6894002 |
⇧89 | ncbi.nlm.nih.gov/pubmed/9219778 |
⇧90 | ncbi.nlm.nih.gov/pubmed/18437485 |
⇧91 | ncbi.nlm.nih.gov/pubmed/2178535 |
⇧92 | ncbi.nlm.nih.gov/pubmed/25992813 |
⇧93 | ncbi.nlm.nih.gov/pubmed/19741311 |
⇧94 | ncbi.nlm.nih.gov/pubmed/28914696 |
⇧95 | ncbi.nlm.nih.gov/pubmed/27446827 |
⇧96 | ncbi.nlm.nih.gov/pubmed/12358231 |
⇧97 | ncbi.nlm.nih.gov/pubmed/22300015 |
⇧98 | sci-hub.tv/10.1148/86.6.1041 |
⇧99 | sci-hub.tv/10.1016/j.cgh.2010.11.039 |
⇧100 | ncbi.nlm.nih.gov/pmc/articles/PMC2963147/ |
⇧101 | ncbi.nlm.nih.gov/pubmed/12498999 |
⇧102 | ncbi.nlm.nih.gov/pubmed/23826847 |
⇧104 | ncbi.nlm.nih.gov/pubmed/14756022 |
⇧105 | pl.wikipedia.org/wiki/Układ_przywspółczulny |
⇧106 | ncbi.nlm.nih.gov/pubmed/11769720 |
⇧107 | ncbi.nlm.nih.gov/pubmed/12084847 |
⇧108 | ncbi.nlm.nih.gov/pubmed/29081029 |
⇧109 | ncbi.nlm.nih.gov/pubmed/10958210 |
⇧110 | ncbi.nlm.nih.gov/pubmed/15912364 |
⇧111 | ncbi.nlm.nih.gov/pubmed/18324880 |
⇧112, ⇧280 | ncbi.nlm.nih.gov/pubmed/27512850 |
⇧115 | ncbi.nlm.nih.gov/pubmed/15849392 |
⇧116 | ncbi.nlm.nih.gov/pubmed/1952711 |
⇧117 | ncbi.nlm.nih.gov/pubmed/19941090 |
⇧118 | ncbi.nlm.nih.gov/pubmed/8710433 |
⇧119 | ncbi.nlm.nih.gov/pubmed/26426655 |
⇧120 | ncbi.nlm.nih.gov/pubmed/11215353 |
⇧121 | ncbi.nlm.nih.gov/pubmed/15631321 |
⇧122 | ncbi.nlm.nih.gov/pubmed/18460163 |
⇧123 | ncbi.nlm.nih.gov/pubmed/23371037 |
⇧124 | ncbi.nlm.nih.gov/pubmed/19391346 |
⇧125 | ncbi.nlm.nih.gov/pubmed/17919274 |
⇧126 | ncbi.nlm.nih.gov/pubmed/17925430 |
⇧127 | ncbi.nlm.nih.gov/pubmed/21086223 |
⇧128 | ncbi.nlm.nih.gov/pubmed/1946000 |
⇧129 | ncbi.nlm.nih.gov/pubmed/15351016 |
⇧130 | ncbi.nlm.nih.gov/pubmed/18046990 |
⇧131 | ncbi.nlm.nih.gov/pubmed/24718860 |
⇧132 | ncbi.nlm.nih.gov/pubmed/22963909 |
⇧133 | ncbi.nlm.nih.gov/pubmed/22964626 |
⇧134 | ncbi.nlm.nih.gov/pubmed/22553136 |
⇧135 | ncbi.nlm.nih.gov/pubmed/20424538 |
⇧136 | ncbi.nlm.nih.gov/pubmed/18609166 |
⇧137 | ncbi.nlm.nih.gov/pubmed/24252041 |
⇧138 | ncbi.nlm.nih.gov/pubmed/22144996 |
⇧139 | ncbi.nlm.nih.gov/pubmed/27556519 |
⇧140 | ncbi.nlm.nih.gov/pubmed/20517277 |
⇧141 | ncbi.nlm.nih.gov/pubmed/6884107 |
⇧142 | ncbi.nlm.nih.gov/pubmed/19957777 |
⇧143 | ncbi.nlm.nih.gov/pubmed/19771391 |
⇧144 | ncbi.nlm.nih.gov/pubmed/19690661 |
⇧145 | ncbi.nlm.nih.gov/pubmed/21248360 |
⇧146 | ncbi.nlm.nih.gov/pubmed/12784293 |
⇧147 | ncbi.nlm.nih.gov/pubmed/18328794 |
⇧148 | ncbi.nlm.nih.gov/pubmed/20639775 |
⇧149 | ncbi.nlm.nih.gov/pubmed/20639774 |
⇧150 | ncbi.nlm.nih.gov/pubmed/18073124 |
⇧151 | ncbi.nlm.nih.gov/pubmed/22538254 |
⇧152 | ncbi.nlm.nih.gov/pubmed/21211656 |
⇧153 | ncbi.nlm.nih.gov/pubmed/18681944 |
⇧154 | ncbi.nlm.nih.gov/pubmed/22135605 |
⇧155 | ncbi.nlm.nih.gov/pubmed/22334515 |
⇧156 | ncbi.nlm.nih.gov/pubmed/22331013 |
⇧157 | ncbi.nlm.nih.gov/pubmed/24121144 |
⇧158 | ncbi.nlm.nih.gov/pubmed/25110424 |
⇧159 | cbi.nlm.nih.gov/pubmed/24753336 |
⇧160 | ncbi.nlm.nih.gov/pubmed/23025757 |
⇧161 | ncbi.nlm.nih.gov/pubmed/26324664 |
⇧163 | ncbi.nlm.nih.gov/pubmed/20736112 |
⇧164 | ncbi.nlm.nih.gov/pubmed/25133779 |
⇧165, ⇧714, ⇧733 | ncbi.nlm.nih.gov/pmc/articles/PMC3128165/ |
⇧166 | ncbi.nlm.nih.gov/pmc/articles/PMC5534346/ |
⇧167 | ncbi.nlm.nih.gov/pubmed/20301323 |
⇧168 | ncbi.nlm.nih.gov/pubmed/26281170 |
⇧169 | ncbi.nlm.nih.gov/pubmed/25168182 |
⇧170 | jstage.jst.go.jp/pub/pdfpreview/internalmedicine/51/20_51_51.8383.jpg |
⇧171 | jstage.jst.go.jp/article/internalmedicine/51/20/51_51.8383/_article |
⇧172 | ncbi.nlm.nih.gov/pubmed/25071357 |
⇧173 | ncbi.nlm.nih.gov/pubmed/15055710 |
⇧174 | www.advances.umed.wroc.pl/pdf/2013/22/3/303.pdf |
⇧175 | ncbi.nlm.nih.gov/pubmed/26674625 |
⇧176 | ncbi.nlm.nih.gov/pubmed/18774247 |
⇧177 | ncbi.nlm.nih.gov/pubmed/12003417 |
⇧178 | ncbi.nlm.nih.gov/pubmed/23698189 |
⇧179 | ncbi.nlm.nih.gov/pubmed/23758760 |
⇧180 | ncbi.nlm.nih.gov/pubmed/16764790 |
⇧181 | ncbi.nlm.nih.gov/pubmed/9619984 |
⇧182 | ncbi.nlm.nih.gov/pubmed/28702854 |
⇧183 | ncbi.nlm.nih.gov/pubmed/19089153 |
⇧184 | ncbi.nlm.nih.gov/pubmed/24011800 |
⇧185 | ncbi.nlm.nih.gov/pubmed/25466325 |
⇧186 | ncbi.nlm.nih.gov/pubmed/24516699 |
⇧187 | ncbi.nlm.nih.gov/pubmed/18720002 |
⇧188 | ncbi.nlm.nih.gov/pubmed/11873099 |
⇧189 | ncbi.nlm.nih.gov/pubmed/19082721 |
⇧190 | ncbi.nlm.nih.gov/pubmed/23794297 |
⇧191 | ncbi.nlm.nih.gov/pubmed/25255080 |
⇧192 | ncbi.nlm.nih.gov/pubmed/26392769 |
⇧193 | ncbi.nlm.nih.gov/pubmed/21454063 |
⇧194 | ncbi.nlm.nih.gov/pubmed/23999171 |
⇧195 | ncbi.nlm.nih.gov/pubmed/26396004 |
⇧196 | ncbi.nlm.nih.gov/pubmed/22105180 |
⇧197 | ncbi.nlm.nih.gov/pubmed/19009231 |
⇧198 | ncbi.nlm.nih.gov/pubmed/10852522 |
⇧199 | ncbi.nlm.nih.gov/pubmed/6224922 |
⇧200 | ncbi.nlm.nih.gov/pubmed/7416139 |
⇧201 | ncbi.nlm.nih.gov/pubmed/28262205 |
⇧202 | ncbi.nlm.nih.gov/pubmed/3800530 |
⇧203 | ncbi.nlm.nih.gov/pubmed/9674479 |
⇧204 | ncbi.nlm.nih.gov/pubmed/25808429 |
⇧205 | ncbi.nlm.nih.gov/pubmed/14662177 |
⇧206 | ncbi.nlm.nih.gov/pubmed/11736721 |
⇧207 | ncbi.nlm.nih.gov/pubmed/17511215 |
⇧208 | ncbi.nlm.nih.gov/pubmed/12393039 |
⇧209 | ncbi.nlm.nih.gov/pubmed/15224835 |
⇧210 | ncbi.nlm.nih.gov/pubmed/19489474 |
⇧211, ⇧389 | ncbi.nlm.nih.gov/pmc/articles/PMC2921087/ |
⇧212 | ncbi.nlm.nih.gov/pubmed/29147879 |
⇧213 | ncbi.nlm.nih.gov/pubmed/9032590 |
⇧214 | ncbi.nlm.nih.gov/pubmed/19491506 |
⇧215 | ncbi.nlm.nih.gov/pubmed/3583692 |
⇧216 | ncbi.nlm.nih.gov/pubmed/17511235 |
⇧217 | ncbi.nlm.nih.gov/pubmed/17603713 |
⇧218 | ncbi.nlm.nih.gov/pubmed/12928077 |
⇧219 | ncbi.nlm.nih.gov/pubmed/11449097 |
⇧220 | ncbi.nlm.nih.gov/pubmed/8157421 |
⇧221 | ncbi.nlm.nih.gov/pubmed/22099620 |
⇧222 | ncbi.nlm.nih.gov/pubmed/26256428 |
⇧223 | ncbi.nlm.nih.gov/pubmed/10957933 |
⇧224 | ncbi.nlm.nih.gov/pubmed/10230922 |
⇧225 | ncbi.nlm.nih.gov/pubmed/11729108 |
⇧226 | ncbi.nlm.nih.gov/pubmed/26443628 |
⇧227 | ncbi.nlm.nih.gov/pubmed/18958550 |
⇧228, ⇧229, ⇧451 | sci-hub.tv/10.1038/ajg.2010.272 |
⇧230 | ncbi.nlm.nih.gov/pubmed/1773945 |
⇧231 | ncbi.nlm.nih.gov/pubmed/1670223 |
⇧232 | ncbi.nlm.nih.gov/pubmed/1811318 |
⇧233 | ncbi.nlm.nih.gov/pubmed/1941459 |
⇧234 | ncbi.nlm.nih.gov/pubmed/17907900 |
⇧235 | sci-hub.tv/10.1007/s00535-004-1440-8 |
⇧236 | ncbi.nlm.nih.gov/pubmed/7404230 |
⇧237 | ncbi.nlm.nih.gov/pubmed/19374305 |
⇧238 | ncbi.nlm.nih.gov/pubmed/879893 |
⇧239 | ncbi.nlm.nih.gov/pubmed/15906752 |
⇧240 | ncbi.nlm.nih.gov/pubmed/23639809 |
⇧241 | ncbi.nlm.nih.gov/pubmed/15089887 |
⇧242, ⇧408 | ncbi.nlm.nih.gov/pubmed/12189552 |
⇧243 | ncbi.nlm.nih.gov/pmc/articles/PMC1595915/?page=2 |
⇧244 | ncbi.nlm.nih.gov/pubmed/19166139 |
⇧245 | ncbi.nlm.nih.gov/pubmed/9454361 |
⇧246 | ncbi.nlm.nih.gov/pubmed/19477034 |
⇧247 | ncbi.nlm.nih.gov/pubmed/19140217 |
⇧248, ⇧477 | ncbi.nlm.nih.gov/pubmed/26650186 |
⇧249 | ncbi.nlm.nih.gov/pubmed/19590427 |
⇧250 | ncbi.nlm.nih.gov/pubmed/20795406 |
⇧251 | ncbi.nlm.nih.gov/pubmed/21883699 |
⇧252 | ncbi.nlm.nih.gov/pubmed/20731160 |
⇧253 | ncbi.nlm.nih.gov/pubmed/19951613 |
⇧254 | ncbi.nlm.nih.gov/pubmed/20414055 |
⇧255 | ncbi.nlm.nih.gov/pubmed/22383209 |
⇧256 | ncbi.nlm.nih.gov/pubmed/20304146 |
⇧257 | ncbi.nlm.nih.gov/pubmed/22413852 |
⇧258 | ncbi.nlm.nih.gov/pubmed/25364974 |
⇧259, ⇧392 | ncbi.nlm.nih.gov/pmc/articles/PMC5083128/ |
⇧260 | ncbi.nlm.nih.gov/pmc/articles/PMC544625/ |
⇧261, ⇧356 | ncbi.nlm.nih.gov/pubmed/19074641 |
⇧262 | ncbi.nlm.nih.gov/pmc/articles/PMC3400810/ |
⇧263 | ncbi.nlm.nih.gov/pubmed/16224642 |
⇧264 | ncbi.nlm.nih.gov/pubmed/11330417 |
⇧265, ⇧739 | ncbi.nlm.nih.gov/pubmed/15913477 |
⇧266 | ncbi.nlm.nih.gov/pubmed/17349848 |
⇧267 | ncbi.nlm.nih.gov/pubmed/23964146 |
⇧268 | ncbi.nlm.nih.gov/pubmed/24928064 |
⇧269 | ncbi.nlm.nih.gov/pubmed/17439595 |
⇧270 | ncbi.nlm.nih.gov/pubmed/24210194 |
⇧271 | ncbi.nlm.nih.gov/pubmed/19429794 |
⇧272 | ncbi.nlm.nih.gov/pubmed/21095095 |
⇧273 | ncbi.nlm.nih.gov/pubmed/7106040 |
⇧274 | ncbi.nlm.nih.gov/pubmed/20497140 |
⇧275 | ncbi.nlm.nih.gov/pubmed/12611566 |
⇧276 | ncbi.nlm.nih.gov/pubmed/27005292 |
⇧277 | ncbi.nlm.nih.gov/pubmed/26986625 |
⇧278, ⇧279, ⇧684 | ncbi.nlm.nih.gov/pmc/articles/PMC3801363/ |
⇧281 | ncbi.nlm.nih.gov/pubmed/18205046 |
⇧282 | sci-hub.tv/10.1111/j.1572-0241.2000.03175.x |
⇧283 | ncbi.nlm.nih.gov/pubmed/11712327 |
⇧284 | ncbi.nlm.nih.gov/pubmed/15166964 |
⇧285 | ncbi.nlm.nih.gov/pubmed/11768699 |
⇧286, ⇧297 | ncbi.nlm.nih.gov/pmc/articles/PMC1799152/?page=1 |
⇧287 | hindawi.com/journals/scientifica/2013/518909/#B140 |
⇧288 | ncbi.nlm.nih.gov/pubmed/15865235 |
⇧289 | ncbi.nlm.nih.gov/pubmed/3792782 |
⇧290 | ncbi.nlm.nih.gov/pubmed/25562159 |
⇧291 | ncbi.nlm.nih.gov/pubmed/25528854 |
⇧292 | ncbi.nlm.nih.gov/pubmed/16002270 |
⇧293 | ncbi.nlm.nih.gov/pubmed/15513378 |
⇧294, ⇧295, ⇧345, ⇧597 | sci-hub.tv/10.1097/01.NPR.0000431881.25363.84 |
⇧296 | ncbi.nlm.nih.gov/pubmed/3569677 |
⇧298 | ncbi.nlm.nih.gov/pubmed/26506614 |
⇧299 | ncbi.nlm.nih.gov/pubmed/20588261 |
⇧300 | ncbi.nlm.nih.gov/pubmed/9132398 |
⇧301 | ncbi.nlm.nih.gov/pubmed/21881975 |
⇧302, ⇧303 | sci-hub.tv/10.1016/j.gtc.2012.12.001 |
⇧304 | ncbi.nlm.nih.gov/pubmed/24338227 |
⇧305 | ncbi.nlm.nih.gov/pubmed/25457064 |
⇧306 | sci-hub.tv/10.1016/j.mito.2004.07.014 |
⇧307 | ncbi.nlm.nih.gov/pubmed/12452391 |
⇧308 | ncbi.nlm.nih.gov/pubmed/19122512 |
⇧309 | ncbi.nlm.nih.gov/pubmed/11729118 |
⇧310 | ncbi.nlm.nih.gov/pubmed/29032661 |
⇧311 | ncbi.nlm.nih.gov/pubmed/17923849 |
⇧312, ⇧648 | ncbi.nlm.nih.gov/pmc/articles/PMC5605139/ |
⇧313 | ncbi.nlm.nih.gov/pubmed/17908704 |
⇧314 | ncbi.nlm.nih.gov/pubmed/15510890 |
⇧315 | ncbi.nlm.nih.gov/pubmed/15467608 |
⇧316 | ncbi.nlm.nih.gov/pubmed/12782823 |
⇧317 | ncbi.nlm.nih.gov/pubmed/22961239 |
⇧318 | ncbi.nlm.nih.gov/pubmed/11182403 |
⇧319, ⇧658 | ncbi.nlm.nih.gov/pmc/articles/PMC3943848/ |
⇧320 | ncbi.nlm.nih.gov/pubmed/18412980 |
⇧321 | ncbi.nlm.nih.gov/pubmed/21369492 |
⇧322 | ncbi.nlm.nih.gov/pubmed/27582035 |
⇧323, ⇧439 | ncbi.nlm.nih.gov/pubmed/19360912 |
⇧324, ⇧500, ⇧502 | ncbi.nlm.nih.gov/pubmed/29199165 |
⇧325 | ncbi.nlm.nih.gov/pubmed/25255580 |
⇧326 | ncbi.nlm.nih.gov/pubmed/12940431 |
⇧327 | ncbi.nlm.nih.gov/pubmed/2617083 |
⇧328 | ncbi.nlm.nih.gov/pubmed/2327378 |
⇧329 | ncbi.nlm.nih.gov/pubmed/27928725 |
⇧330 | ncbi.nlm.nih.gov/pubmed/22101998 |
⇧331, ⇧534 | sci-hub.tv/10.1007/s10620-007-0108-7 |
⇧332 | ncbi.nlm.nih.gov/pubmed/17304402 ncbi.nlm.nih.gov/pubmed/8112143 |
⇧333 | ncbi.nlm.nih.gov/pubmed/21726258 |
⇧334 | ncbi.nlm.nih.gov/pubmed/21735083 |
⇧335 | ncbi.nlm.nih.gov/pubmed/28366009 |
⇧336 | ncbi.nlm.nih.gov/pubmed/18072821 |
⇧337 | ncbi.nlm.nih.gov/pubmed/17537023 |
⇧338 | rozanski.li/2872/theae-viridis-folium-lisc-zielonej-herbaty-w-fitoterapii-i-kosmetologii/ |
⇧339 | Murphy DW, Castell DO (1988) Chocolate and heartburn: evidence of increased esophageal acid exposure after chocolate ingestion. Am J Gastroenterol 83:633–636 |
⇧340 | sci-hub.tv/10.1007/s10620-007-0108-7 |
⇧341 | ncbi.nlm.nih.gov/pubmed/21675582 |
⇧342 | ncbi.nlm.nih.gov/pubmed/11712463 |
⇧343 | ncbi.nlm.nih.gov/pubmed/16871438 |
⇧344 | ncbi.nlm.nih.gov/pubmed/22185927 |
⇧346 | ncbi.nlm.nih.gov/pubmed/29259636 |
⇧347 | ncbi.nlm.nih.gov/pubmed/25806715 |
⇧348 | ncbi.nlm.nih.gov/pubmed/7383069 |
⇧349, ⇧535 | ncbi.nlm.nih.gov/pubmed/25396005 |
⇧350 | ncbi.nlm.nih.gov/pubmed/16246942 |
⇧351 | ncbi.nlm.nih.gov/pubmed/23464395 |
⇧352, ⇧361 | onlinelibrary.wiley.com/doi/10.1111/pai.12659/full |
⇧353 | ncbi.nlm.nih.gov/pubmed/16696806 |
⇧354 | ncbi.nlm.nih.gov/pubmed/17201221 |
⇧355 | ncbi.nlm.nih.gov/pubmed/20535343 |
⇧357 | ncbi.nlm.nih.gov/pubmed/18853995 |
⇧358 | sci-hub.tv/10.1038/ajg.2009.208 |
⇧359 | ncbi.nlm.nih.gov/pubmed/2741888 |
⇧360 | ncbi.nlm.nih.gov/pubmed/2993687 |
⇧362 | ncbi.nlm.nih.gov/pubmed/15448429 |
⇧363 | ncbi.nlm.nih.gov/pubmed/26257132 |
⇧364 | ncbi.nlm.nih.gov/pubmed/22513270 |
⇧365 | ncbi.nlm.nih.gov/pubmed/8677993 |
⇧366 | sci-hub.tv/10.1111/j.1572-0241.2000.03175.x |
⇧367 | ncbi.nlm.nih.gov/pubmed/26022877 |
⇧368 | ncbi.nlm.nih.gov/pubmed/26472544 |
⇧369 | ncbi.nlm.nih.gov/pubmed/7918922 |
⇧370 | ncbi.nlm.nih.gov/pubmed/16187197 |
⇧371 | sci-hub.tv/10.1016/j.dld.2006.01.013 |
⇧372 | ncbi.nlm.nih.gov/pubmed/28880991 |
⇧373 | ncbi.nlm.nih.gov/pubmed/28884564 |
⇧374 | ncbi.nlm.nih.gov/pubmed/24712047 |
⇧375 | ncbi.nlm.nih.gov/pubmed/3580038 |
⇧376 | ncbi.nlm.nih.gov/pubmed/28264069 |
⇧377 | ncbi.nlm.nih.gov/pubmed/16699276 |
⇧378 | ncbi.nlm.nih.gov/pubmed/11922547 |
⇧379 | ncbi.nlm.nih.gov/pubmed/1432468 |
⇧380 | ncbi.nlm.nih.gov/pubmed/21435103 |
⇧381 | ncbi.nlm.nih.gov/pubmed/16990198 |
⇧382 | sci-hub.tv/10.1080/03639040701385691 |
⇧383 | sci-hub.tv/10.1016/j.jss.2011.11.1013 |
⇧384 | ncbi.nlm.nih.gov/pubmed/16404920 |
⇧385 | ncbi.nlm.nih.gov/pubmed/22844861 |
⇧386 | ncbi.nlm.nih.gov/pubmed/12671885 |
⇧387 | ncbi.nlm.nih.gov/pubmed/26465278 |
⇧388 | ncbi.nlm.nih.gov/pubmed/20946134 |
⇧390 | ncbi.nlm.nih.gov/pubmed/20946664 |
⇧391 | ncbi.nlm.nih.gov/pubmed/21636532 |
⇧393 | ncbi.nlm.nih.gov/pubmed/23744553 |
⇧394 | ncbi.nlm.nih.gov/pubmed/18178609 |
⇧395 | ncbi.nlm.nih.gov/pubmed/21930730 |
⇧396 | ncbi.nlm.nih.gov/pubmed/17761783 |
⇧397 | ncbi.nlm.nih.gov/pubmed/17852856 |
⇧398 | ncbi.nlm.nih.gov/pubmed/1787496 |
⇧399 | ncbi.nlm.nih.gov/pubmed/22433923 |
⇧400 | ncbi.nlm.nih.gov/pubmed/15580394 |
⇧401 | ncbi.nlm.nih.gov/pubmed/682690 |
⇧402 | ncbi.nlm.nih.gov/pubmed/18080764 |
⇧403 | ncbi.nlm.nih.gov/pubmed/12022988 |
⇧404 | ncbi.nlm.nih.gov/pubmed/23613623 |
⇧405 | ncbi.nlm.nih.gov/pubmed/3479229 |
⇧406 | ncbi.nlm.nih.gov/pubmed/17591046 |
⇧407 | ncbi.nlm.nih.gov/pubmed/1871550 |
⇧409, ⇧506 | ncbi.nlm.nih.gov/pubmed/16229808 |
⇧410, ⇧574 | ncbi.nlm.nih.gov/pubmed/19147583 |
⇧411 | ncbi.nlm.nih.gov/pubmed/19137778 |
⇧412 | ncbi.nlm.nih.gov/pubmed/21751195 |
⇧413 | ncbi.nlm.nih.gov/pubmed/19174793 |
⇧414 | ncbi.nlm.nih.gov/pubmed/20301670 |
⇧415 | ncbi.nlm.nih.gov/pubmed/19603010 |
⇧416 | ncbi.nlm.nih.gov/pubmed/23020284 |
⇧417 | ncbi.nlm.nih.gov/pubmed/18564661 |
⇧418 | ncbi.nlm.nih.gov/pubmed/18483390 |
⇧419 | ncbi.nlm.nih.gov/pubmed/18349295 |
⇧420 | ncbi.nlm.nih.gov/pubmed/18192685 |
⇧421 | ncbi.nlm.nih.gov/pubmed/18560602 |
⇧422 | ncbi.nlm.nih.gov/pubmed/11140952 |
⇧423 | ncbi.nlm.nih.gov/pubmed/28803389 |
⇧424 | ncbi.nlm.nih.gov/pubmed/28079238 |
⇧425 | ncbi.nlm.nih.gov/pubmed/23060919 |
⇧426 | ncbi.nlm.nih.gov/pubmed/17476458 |
⇧427 | ncbi.nlm.nih.gov/pubmed/15971196 |
⇧428, ⇧649 | sci-hub.tv/10.1007/s12664-011-0095-7 |
⇧429 | ncbi.nlm.nih.gov/pubmed/26822871 |
⇧430 | ncbi.nlm.nih.gov/pubmed/25910374 |
⇧431 | ncbi.nlm.nih.gov/pubmed/19679045 |
⇧433 | ncbi.nlm.nih.gov/pubmed/18294635 |
⇧434 | ncbi.nlm.nih.gov/pubmed/18297437 |
⇧435 | ncbi.nlm.nih.gov/pubmed/22451118 |
⇧436 | ncbi.nlm.nih.gov/pubmed/28002892 |
⇧437 | ncbi.nlm.nih.gov/pubmed/23532991 |
⇧438 | ncbi.nlm.nih.gov/pubmed/18684245 |
⇧440 | ncbi.nlm.nih.gov/pubmed/20060064 |
⇧441 | ncbi.nlm.nih.gov/pubmed/20378675 |
⇧442 | ncbi.nlm.nih.gov/pubmed/27957023 |
⇧443 | ncbi.nlm.nih.gov/pubmed/21555654 |
⇧444 | ncbi.nlm.nih.gov/pubmed/25097359 |
⇧445 | ncbi.nlm.nih.gov/pubmed/24175253 |
⇧446 | ncbi.nlm.nih.gov/pubmed/22242022 |
⇧447 | ncbi.nlm.nih.gov/pubmed/22298089 |
⇧448 | ncbi.nlm.nih.gov/pubmed/27698540 |
⇧449 | ncbi.nlm.nih.gov/pubmed/16646627 |
⇧450 | ncbi.nlm.nih.gov/pubmed/20489030 |
⇧452 | ncbi.nlm.nih.gov/pubmed/2854911 |
⇧453 | ncbi.nlm.nih.gov/pubmed/19149516 |
⇧454, ⇧543, ⇧545, ⇧546 | ncbi.nlm.nih.gov/pubmed/22955351 |
⇧455 | ncbi.nlm.nih.gov/pubmed/21623293 |
⇧456 | ncbi.nlm.nih.gov/pmc/articles/PMC3787883/ |
⇧457 | ncbi.nlm.nih.gov/pubmed/11023627/ |
⇧458 | ncbi.nlm.nih.gov/pubmed/15685551/ |
⇧459 | ncbi.nlm.nih.gov/pubmed/16143137/ |
⇧460 | ncbi.nlm.nih.gov/pubmed/16102747/ |
⇧461 | ncbi.nlm.nih.gov/pubmed/19460767/ |
⇧462 | ncbi.nlm.nih.gov/pubmed/19661930 |
⇧463 | ncbi.nlm.nih.gov/pubmed/17974730 |
⇧464 | ncbi.nlm.nih.gov/pubmed/18054750 |
⇧465 | ncbi.nlm.nih.gov/pubmed/22087794 |
⇧466 | ncbi.nlm.nih.gov/pubmed/25318791 |
⇧467 | ncbi.nlm.nih.gov/pmc/articles/PMC2974811/ |
⇧468 | sci-hub.tv/10.1097/MOG.0000000000000250 |
⇧469 | ncbi.nlm.nih.gov/pubmed/28502434 |
⇧470 | sci-hub.tv/10.1001/jama.2012.233 |
⇧471 | Merwat SN, Spechler SJ. Might the use of acid-suppressive medications predispose to the development of eosinophilic esophagitis? Am J Gastroenterol 2009;104:1897-902. |
⇧472 | Orenstein S, Hassall E, Furmaga-Jablonska W, Atkinson S, Raanan M. Multicenter, double-blind, randomized, placebo-controlled trial assessing the efficacy and safety of proton pump inhibitor lansoprazole in infants with symptoms of gastroesophageal reflux disease. J Pediatr 2009;154:514-20. |
⇧473 | ncbi.nlm.nih.gov/pubmed/17432815 |
⇧474 | ncbi.nlm.nih.gov/pubmed/23905907 |
⇧475 | hub.tv/10.1093/fampra/cmq020 |
⇧476 | ncbi.nlm.nih.gov/pubmed/15480522 |
⇧478 | sci-hub.tv/10.1111/1462-2920.12285 |
⇧479 | ncbi.nlm.nih.gov/pubmed/17725600 |
⇧480 | sci-hub.tv/10.1111/j.1572-0241.2000.03408.x |
⇧481 | ncbi.nlm.nih.gov/pubmed/10540050 |
⇧482 | ncbi.nlm.nih.gov/pubmed/12229960 |
⇧483 | ncbi.nlm.nih.gov/pubmed/17879862 |
⇧484 | Vakil N. Acid inhibition and infections outside the gastrointestinal tract. Am J Gastroenterol. 2009;104(suppl 2):S17-S20 |
⇧485 | ncbi.nlm.nih.gov/pubmed/10924942 |
⇧486 | ncbi.nlm.nih.gov/pubmed/16200654 |
⇧487 | ncbi.nlm.nih.gov/pubmed/18460247 |
⇧488 | sci-hub.tv/10.18043/ncm.77.3.202 |
⇧489 | ncbi.nlm.nih.gov/pubmed/10631362 |
⇧490 | ncbi.nlm.nih.gov/pubmed/17353980 |
⇧491 | ncbi.nlm.nih.gov/pubmed/26058109 |
⇧492 | ncbi.nlm.nih.gov/pubmed/28837700 |
⇧493 | ncbi.nlm.nih.gov/pubmed/17190895 |
⇧494 | ncbi.nlm.nih.gov/pubmed/22783985 |
⇧495 | ncbi.nlm.nih.gov/pubmed/22437476 |
⇧496, ⇧497, ⇧602 | sci-hub.tv/10.1016/j.jpeds.2006.07.028 |
⇧498 | ncbi.nlm.nih.gov/pubmed/17018502 |
⇧499 | sci-hub.tv/10.1111/j.1532-5415.2009.02076.x |
⇧501 | ncbi.nlm.nih.gov/pubmed/26742306 |
⇧503 | thecamreport.com/2010/02/rikkunshito-to-treat-delayed-gastric-emptying/ |
⇧504 | ncbi.nlm.nih.gov/pubmed/22081052 |
⇧505 | ncbi.nlm.nih.gov/pubmed/16143269 |
⇧507 | ncbi.nlm.nih.gov/pubmed/20702746 |
⇧508 | ncbi.nlm.nih.gov/pubmed/4443322 |
⇧509 | pl.wikipedia.org/wiki/Zesp%C3%B3%C5%82_prze%C5%BCuwania |
⇧510 | ncbi.nlm.nih.gov/pubmed/23479991 |
⇧511 | ncbi.nlm.nih.gov/pubmed/8938895 |
⇧512 | ncbi.nlm.nih.gov/pubmed/22146488 |
⇧513 | ncbi.nlm.nih.gov/pubmed/22180850 |
⇧514 | ncbi.nlm.nih.gov/pubmed/22197650 |
⇧515 |