Aspergilloza jest to aktywna infekcja grzybem Aspergillus. Zdarzają się (rzadko) aspergillozy oczne czy też ucha(częściej) – i…nie wygląda to za ładnie(odsyłam do google). Przeważnie aspergillus 1)ncbi.nlm.nih.gov/pubmed/15824819 . Ogólnie nie planowałem tego artykuły – poprosiła mnie o niego w sumie nie znana mi osoba, a że temat wydał mi się w miarę interesujący postanowiłem go trochę lepiej przestudiować.
Aspergillus fumigatus czy też niger(kropidlak) jest grzybem szeroko rozpowszechnionym w przyrodzie. Występuje w rozkładającej się materii organicznej, wodzie, glebie, na powierzchni roślin w systemach wentylacyjnych budynków czy też w klimatyzacjach samochodowych.Zarodniki produkowane przez Aspergillus fumigatus należą do silnych alergenów. Grzyb ten wywołuje zachorowania głównie u osób z przewlekłymi chorobami układu oddechowego oraz u osób z upośledzeniem odporności(osoby stosujące kortykosteroidy czy też osóby z AIDS). Choroby wywołane przez grzyba Aspergillus mogą przebiegać w postaci zapalenia płuc, alergicznej aspergilozy oskrzelowo-płucnej oraz aspergilozy ośrodkowego układu nerwowego. W przypadku zapalenia płuc wywołanego przez Aspergillus fumigatus w diagnostyce pomocny jest obraz zmian w RTG klatki piersiowej, a jeszcze bardziej charakterystyczne zmiany w tomografii komputerowej.Pomocne jest także poszukiwanie antygenu Aspergillus we krwi metodami immunologicznymi oraz ewentualnie posiewy krwi i hodowla kropidlaka.Obecność grzybów z rodzaju Aspergillus jest powszechna w płucach osób chorych na astmę. Kolonizacja dróg oddechowych przez Aspergillus fumigatus wywołuje odpowiedź immunologiczną, w wyniku której dochodzi do wytwarzania przeciwciał skierowanych przeciw antygenom grzyba, głównie w klasie IgE i IgG. Przeciwciała IgE mediują reakcję alergiczną typu natychmiastowego, która prowadzi do wystąpienia skurczu oskrzeli oraz obrzęku błony śluzowej oskrzeli i wystąpienia napadu astmy oskrzelowej po ekspozycji na antygeny grzyba.
Do rozpoznania alergicznej aspergilozy oskrzelowo-płucnej pomocne są takie markery diagnostyczne jak:
W przypadku aspergilozy ośrodkowego układu nerwowego dochodzi najczęściej do powstania ropni w mózgu, zapalenia mózgu, rzadziej grzybiczego zapalenia opon mózgowo-rdzeniowych. Badanie ogólne płynu mózgowo-rdzeniowego zazwyczaj nie wykazuje odchyleń od normy. Pomocny może być obraz charakterystycznych zmian w tomografii komputerowej lub rezonansie magnetycznym mózgowia. Najważniejsze w diagnostyce jest jednak wykazanie obecności grzyba pod mikroskopem w
bezpośrednim preparacie z płynu mózgowo-rdzeniowego barwionego metodą Grama, badanie serologiczne wykrywające antygen kropidlaka w płynie mózgowo-rdzeniowym lub we krwi chorego (badanie krwi metodą ELISA), posiew płynu mózgowo-rdzeniowego na podłożu Sabourauda i hodowla grzyba, oraz ewentualnie wykrycie materiału genetycznego grzyba w płynie mózgowo-rdzeniowym metodą PCR.
Test alergiczny na zarodniki grzybów z grupy aspergillus np. test na gen krążacy Aspergillusa 2)diag.pl/katalogi/badanie/infekcje/aspergillus-antygen-krazacy/
(taka podstawa podstaw)
Co ciekawe moja czytelniczka napisała do mnie w sprawie Aspergillusa znajdującego się u niej w żołądku – jest to wyjątkowo rzadki problem , nawet się głębiej nie zastanawiałem jak to możliwe(podejrzewam małą ilość soku żołądkowego/problem z jego wytwarzaniem) tym bardziej postanowiłem zająć się tym tematem.
Absolutnie wszystko co można znaleźć w ogólnodostępnych badaniach co hamuje,zwiększa lub po prostu wpływa na grzyby z gatunku Aspergillus:
Od siebie mogę polecić na wszelakie mykotoksyny Modified citrus pectins czyli modyfikowane pektyny cytrusowe (firma now foods).
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Literatura
⇧1 | ncbi.nlm.nih.gov/pubmed/15824819 |
---|---|
⇧2 | diag.pl/katalogi/badanie/infekcje/aspergillus-antygen-krazacy/ |
⇧3 | ncbi.nlm.nih.gov/pubmed/8977206 |
⇧4 | ncbi.nlm.nih.gov/pubmed/16337299 |
⇧5 | ncbi.nlm.nih.gov/pubmed/7823297 |
⇧6, ⇧12, ⇧38 | ncbi.nlm.nih.gov/pubmed/12694455 |
⇧7 | ncbi.nlm.nih.gov/pubmed/12176092 |
⇧8 | ncbi.nlm.nih.gov/pubmed/9721607 |
⇧9 | ncbi.nlm.nih.gov/pubmed/15951137 |
⇧10 | ncbi.nlm.nih.gov/pubmed/18077042 |
⇧11 | ncbi.nlm.nih.gov/pubmed/19298215 |
⇧13 | ncbi.nlm.nih.gov/pubmed/17304618 |
⇧14 | ncbi.nlm.nih.gov/pubmed/19455635 |
⇧15 | ncbi.nlm.nih.gov/pubmed/17236167 |
⇧16 | ncbi.nlm.nih.gov/pubmed/24229396 |
⇧17 | ppr.pl/wiadomosci/aktualnosci/bakterie-na-plesn-38256 |
⇧18 | pl.wikipedia.org/wiki/Ksantyna |
⇧19 | ncbi.nlm.nih.gov/pubmed/21968902 |
⇧20 | ncbi.nlm.nih.gov/pubmed/23573983 |
⇧21 | ncbi.nlm.nih.gov/pubmed/6316853 |
⇧22 | ncbi.nlm.nih.gov/pubmed/10338518 |
⇧23 | ncbi.nlm.nih.gov/pubmed/16933623 |
⇧24, ⇧25, ⇧26, ⇧27 | ncbi.nlm.nih.gov/pubmed/23134805 |
⇧28 | ncbi.nlm.nih.gov/pubmed/21706950 |
⇧29 | ncbi.nlm.nih.gov/pubmed/24584863 |
⇧30 | ncbi.nlm.nih.gov/pmc/articles/PMC3770570/ |
⇧31 | ncbi.nlm.nih.gov/pubmed/26408900 |
⇧32 | ncbi.nlm.nih.gov/pubmed/24314266 |
⇧33 | ncbi.nlm.nih.gov/pubmed/26585445 |
⇧34 | ncbi.nlm.nih.gov/pubmed/21441864 |
⇧35 | ncbi.nlm.nih.gov/pubmed/23593573 |
⇧36 | ncbi.nlm.nih.gov/pubmed/23983381 |
⇧37 | ncbi.nlm.nih.gov/pubmed/21534488 |
⇧39 | ncbi.nlm.nih.gov/pubmed/25242937 |
⇧40 | ncbi.nlm.nih.gov/pubmed/18353477 |
⇧41 | ncbi.nlm.nih.gov/pubmed/23437822 |
⇧42 | ncbi.nlm.nih.gov/pubmed/25269603 |
⇧43 | ncbi.nlm.nih.gov/pubmed/26597145 |
⇧44 | ncbi.nlm.nih.gov/pubmed/22556591 |
⇧45 | ncbi.nlm.nih.gov/pubmed/8133654 |
⇧46 | ncbi.nlm.nih.gov/pubmed/10083848 |
⇧47 | ncbi.nlm.nih.gov/pubmed/15189294 |
⇧48 | ncbi.nlm.nih.gov/pubmed/16355848 |
⇧49 | ncbi.nlm.nih.gov/pubmed/22186064 |
⇧50 | ncbi.nlm.nih.gov/pubmed/19056546 |
⇧51 | ncbi.nlm.nih.gov/pubmed/26356116 |
⇧52 | ncbi.nlm.nih.gov/pubmed/21669082 |
⇧53 | ncbi.nlm.nih.gov/pubmed/25270080 |
⇧54 | ncbi.nlm.nih.gov/pubmed/26026170 |
⇧55 | ncbi.nlm.nih.gov/pubmed/26239975 |
⇧56 | ncbi.nlm.nih.gov/pubmed/26394117 |
⇧57 | ncbi.nlm.nih.gov/pubmed/25428206 |
⇧58 | ncbi.nlm.nih.gov/pubmed/24582134 |
⇧59 | ncbi.nlm.nih.gov/pubmed/21707253 |
⇧60 | ncbi.nlm.nih.gov/pubmed/26433461 |
⇧61 | ncbi.nlm.nih.gov/pubmed/24291176 |
⇧62 | ncbi.nlm.nih.gov/pubmed/19906457 |
⇧63 | ncbi.nlm.nih.gov/pubmed/22051933 |
⇧64 | ncbi.nlm.nih.gov/pubmed/22690956 |
⇧65 | ncbi.nlm.nih.gov/pubmed/11668356 |
⇧66 | ncbi.nlm.nih.gov/pubmed/26678126 |
⇧67 | ncbi.nlm.nih.gov/pubmed/16406143 |
⇧68 | ncbi.nlm.nih.gov/pubmed/10477070 |
⇧69 | ncbi.nlm.nih.gov/pubmed/23810954 |
Konferencja trwała 3dni i odbyła się w Seattle w USA – są to notatki z tej konferencji chłopaka o imieniu Scott z betterhealthguy.com – ogólnie sledze bloga i tak jak już wcześniej przetłumaczyłem trochę tekstu z poprzednich konferencji tak teraz do takich tłumaczeń wracam bo jest tego naprawdę dużo.
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Literatura
⇧1 | ncbi.nlm.nih.gov/pubmed/7968455 |
---|
We wcześniejszym artykule skupiłem się ogólnie na scharakteryzowaniu 2 ramion układu odpornościowego – limfocytów Th1 i Th2. Nie wspomniałem jednak za wiele na temat jakie produkty diety,suplementy czy też zioła podnoszą lub obniżają cytokiny zapalne lub przeciwzapalne wchodzące w skład w/w limfocytów. W tej części wypunktuje rzeczy które podnoszą i obniżają limfocyty Th1 – lista poniżej(naturalnie jest tego dużo więcej…):
Co z suplementów i produktów diety obniża poziomy limfocytów Th1?
– arbuz
– papaja
– Lit (IFN)
– Ekstrakt z liścia oliwnego (obniża Interferony gamma)
– kwas urosolowy (obniża IL-2 i interferon gamma)
– bromelina
– lecytyna/cholina
– wapń
– Witamina A/retinol (obniża Interferon gamma, i IL-12R)
– 2gram kurkuminy longa z rana
– EGCG/herbata zielona (nie zwiększa Th2)
– wątroba dorsza/omega 3 (nie zwiększa Th2)
– białka jajek/albumina
– awokado
– Kombucha/kwas mlekowy
– Boswelia
– Teaflaviny(z ciemnej herbaty)-hamują IL-2,IL-12,Interferony oraz IL-4 i IL-5 także Th1 i Th2
– Truskawki(IL-12)
– Olej z czarnuszki – łyżeczka z każdym posiłkiem
– Inozytol
– Pregnenolone
– Berberyna
– Astaksantyna
– Resweratrol
– Teanina
– Dan Shen(IL-1b)
– Chmiel(substancja xanthohumol) – zmniejsza IL-2 i interferony(brany przed snem)
– ryż naturalny
– chrom
– oliwa z oliwek extra virgin
– olej z marihuany(wiadomo jakiej ;), olej z wiesiołka, olej z ogórecznika
– jagody
– olej sezamowy (bez zwiększania Th2)
– Cynamon (zmniejsza IL-12 i interferony)
– karob(mączka chleba świętojańskiego- IL-12 i Interferony)
– kardamon
– Koper włoski
– Mangan
– Alkohol
– Pistacje
– Marihuana/THC
– niedobory cynku
– Lonicera japonica
– Apicidin
– pestki dyni
– gruszka
– Luteolina
– Mirycetyna(w warzywach)
– Bioflawonoidy z cytrusów (naringina z grejfruta obniża Interferon gamma)
– Rutyna(j/w)
– Koenzym Q10 (obniża IL-4 i TNF alfa, a podwyższa IL-10)
– Kwas rozmarynowy (w oregano i szałwi) (obniża IFN gamma i IL-2)
– glukozamina (obniża interferon gamma)
– sylimaryna (IL-12)
– aspiryna (IL-12)
– jabłko
– kantalupa
– Inozyna
– kwas sialowy (jego braki w komórkach prowadzą do wzrostu stanów zapalnych co w konsekwencji zwiększa poziomy Th1 tzn zwiększa IL1 alfa,IL-6,TNF alfa, IL-12, MHCII)
– apigenina
– Gingko Biloba (IFN gamma)
– Gotu kola(lekkie działanie)
– Amerykański żeń-szeń (Interferon gamma)
– Liść pokrzywy (IL-2 i interferon gamma)
– Andrografis (IL-2)
– Resweratrol w wysokiej dawce
– Tarczyca bajkalska(Interferony i IL-12)
– Lukrecja (zwiększa Th1 na poczatku ale po dłuższym czasie zaczyna go zmniejszać gdyż zwiększa glukokortykosteroidy)
– Honokiol(magnolia)
– Low Dose Naltrexon (LDN)
– Chryzyna
– Kwas walproinowy
– Cat’s Claw
– Dziurawiec
– Epicor
– Ketamina(lek)
– Kwas oleanolowy i triterpeny znajdujące się w oliwie z oliwek, czosnku i innych
– Synefryna
– Aloes(Interferony)
– Borówka(antocyjany w dużych dawkach)
– Probiotyki (niektóre – więcej o probiotykach i ich działaniu na układ odpornościowy pisałem już tutaj)
Spory procent produktów które obniża Th1 równocześnie podwyższa Th2 jednak nie wszystkie gdyż są i takie które jednocześnie podwyższaja obydwa typy cytokin jak i takie które obniżaja oba ramiona układu immunologicznego. Np. taka role pełnią komórki T regulatorowe(modulującą tj.balansującą ukł.odpornościowy). Przy stosowaniu suplementów czy ziół na podniesienie Th1 moge podpowiedzieć, aby starać się stosować je na noc gdyż podwyższone TNF-alfa jak i IL-1b wzmagają zmęczenie. Są również zioła które pomimo że wzmagają Th1 (niektóre cytokiny) powodują obniżenie IL-1beta oraz TNF alfa także trzeba również uważać i na te właściwości. Ogólnie rzecz biorąc wszystko zależy od tego w jakim stanie znajduje się Twój układ odpornościowy – jeśli jest obecna infekcja wirusowa – chcesz zwiększać interferony gamma, jeśli infekcja np. EBV będzie Ci najprawdopodobniej zależeć na zbijaniu Th2(wirus ten zwiększa przeciwzapalną cytokinę IL-10) oraz zwiększenie interferonu gamma, jeśli jest to infekcja bakteryjna bardzo możliwe że będziesz chciał obniżyć procesy zapalne poprzez zmniejszenie IL-2 i TNF alfa – indywidualna i celowana terapia w dany organizm odpowiednimi do tego celu dobranymi ziołami, suplementami i produktami diety to klucz do sukcesu. Należy również pamiętać o tym że posiłki zawierające lektyny mogą zwiększać poziomy Th2, także proponuje wziąć to również pod uwagę.
Inne sposoby obniżające/zwiększające Th1:
– umiarkowane ćwiczenia zwiększają Th1
– Pomijanie posiłków (zmniejsza interferony, zwiększa IL-4)
– akupunktura(obniża)
– długie i bardzo intensywne ćwiczenia(powodujących wręcz przetrenowanie) obniżają Th1
– Słońce(promienie UVB). Zmniejsza interferony gamma i IL-12 oraz zwiększa limfocyty Th2 jeśli ktoś ma ich dominacje. Ogolnie rzecz biorąc jednak moduluje cały układ odpornościowy obniżając obydwa ramiona jeśli są podwyższone. Obniża przeciwciała IgE.
– Dobowy rytm dnia – najniższy poziom Th1 jest rano ok.godziny 6
– Kontuzje (zwiększają)
– Mykotoksyny i pleśń (obniżają th1 zwłaszcza IFN-gamma i zwiększają th2)
– niskie poziomy Glutationy które są bezpośrednio powiązane z wysokim stanem zapalnym
– przewlekły stres(zwiększa)
Hormony i neurotransmitery zmniejszające Th1
– Estrogen
– Estradiol(wysoki estradiol zmniejsza interferony oraz IL-12)
– Witamina D3
– Melatonina(interferony gamma)
– Somatrostatyna(hormon blokujący wydzielanie hormonu wzrostu)
– prolaktyna (zwiększa się zwłaszcza po ćwiczeniach fizycznych, po posiłku lub po współżyciu)
– nadmiar tlenku azotu(NO)
– Serotonina (obniża TNF, IL-12 i zwiększa IL-10, NO oraz PGE2)
– Dopamina (prekursorem jest L-dopa/mucuna)
– Pregnenolone (również zmniejsza th2)
– Progesteron (również zwiększa IL-10)
– Testosteron(obniża IL-12 i zwiększa IL-10, zmniejsza TNF alfa i IL-1b),testosteron możę być zwiększony gdy zwiększy się poziom DHEA
– ACTH
– alfa-MSH
– średniej intensywności ćwiczenia
– Noradrenalina
– Histamina
– GABA(A)
Co zwiększa Th1
– Gluten (zwiększa th1)
– Kazeina j.w
– Kawa j.w
– Fitosterole i sterole j.w
– UVA i UVB (zwiększają TNF alfa)
– Kwas fitynowy(zwiększa Th1 także lepiej nie spożywać go w dużych ilościach jeśli ktoś ma ma przewagę Th1 – wiecej o nim pisałem już tutaj)
– Lektyny (zwiększają interferon gamma i ogólnie stany zapalne)
– Histamina (podwyższona to raczej efekt wysokiego Th1)
– Duże dawki witaminy E
– Nadczynność tarczycy (zwiększa)
– Aktywacja Nrf2
– Kukurydza
– Orzechy nerkowca, skórka migdałów
– ALA
– Figi
– Mango
– Ziemniaki
– Propolis
– Trawa pszeniczna
– Ekstrakt z bambusa
– Grzyby Miitake, Reishi i Shiitake
– Słodkie ziemniaki/bataty
– Kozieradka
– Czarna porzeczka
– Żurawina
– Kiwi
– Kolendra
– Kakao
– Czosnek (w niskich dawkach)
– Czarny pieprz
– Banany
– Bazylia
– Kapsaicyna
– Pomidory
– Kordyceps – bardziej moduluje Th1 do Th2 jednak posiada w sobie adenozynę co możę spowodować podwyższenie Th1
– Laktoferyna
– Jagody Goji
– Gorzki melon
– Mleczko pszczele
– Chlorella
– Neem (zwiększa inferferony)
– Chitosan
– Śliwki japońskie
– Daktyle
– Noni
– I3C (w warzywach)
– DIM (w warzywach)
– Glutamina
– Selen
– LDN (Zwiększa zarówno Th1 i Th2 tj. IFN-gamma, IL-2 oraz IL-4 i IL-10), w innym badaniu ma działanie modulujące)
– Fukoidan
– Arginina (Zwiększa Th1 w odpowiedzi na zakażenie, jednak zmniejsza też Th2 w odpowiedzi na zranienie)
– German
– Rhodiola (zwiększa zarówno Th1 jak i Th2)
– Nadmiar jodu
Ścieżki biochemiczne w organiźmie obniżające Th1
– blokowanie NF-kappaBeta oraz STAT3 blokuje odpowiedź Th1
– hamowanie mTOR
– inne ścieżki: Galectin-1, Ace, Stat1, GSK3, HDAC, PDE4, DPP-4, PPARgamma(zwiększenie), IL-10(zwiększenie), MCP-1
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
ncbi.nlm.nih.gov/pubmed/11261793
ncbi.nlm.nih.gov/pmc/articles/PMC1810449/?report=classic
ncbi.nlm.nih.gov/pmc/articles/PMC3419913/#b23
ncbi.nlm.nih.gov/pubmed/24176234
ncbi.nlm.nih.gov/pubmed/23707775
ncbi.nlm.nih.gov/pubmed/24704625
ncbi.nlm.nih.gov/pmc/articles/PMC1810449/?report=classic
ncbi.nlm.nih.gov/pubmed/23064699
ncbi.nlm.nih.gov/pmc/articles/PMC1112084/
ncbi.nlm.nih.gov/pubmed/11807963
ncbi.nlm.nih.gov/pubmed/20597096
ncbi.nlm.nih.gov/pubmed/23993202
ncbi.nlm.nih.gov/pmc/articles/PMC3642442/
ncbi.nlm.nih.gov/pubmed/22960221
jci.org/articles/view/69355
biomedcentral.com/1471-2377/12/95
ncbi.nlm.nih.gov/pubmed/9022014
ncbi.nlm.nih.gov/pmc/articles/PMC119893/
en.wikipedia.org/wiki/Helminthic_therapy
ncbi.nlm.nih.gov/pubmed/10036693
ncbi.nlm.nih.gov/pubmed/7769259
plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0029801
iovs.org/content/38/12/2483
ncbi.nlm.nih.gov/pubmed/16214085
hindawi.com/journals/ecam/2012/893023/
ncbi.nlm.nih.gov/pmc/articles/PMC3938879/
ncbi.nlm.nih.gov/pubmed/7574928
ncbi.nlm.nih.gov/pubmed/12112629
pnas.org/content/95/6/3071.full.pdf
jimmunol.org/content/172/6/3808.full
ncbi.nlm.nih.gov/pubmed/17383064
ncbi.nlm.nih.gov/pubmed/17015737
jimmunol.org/cgi/content/meeting_abstract/190/1_MeetingAbstracts/115.5
ncbi.nlm.nih.gov/pubmed/17383064
hindawi.com/journals/jir/2014/282495/
ncbi.nlm.nih.gov/pubmed/10657623
ncbi.nlm.nih.gov/pmc/articles/PMC2633636/
jimmunol.org/content/168/3/1087.long
cell.com/cell-reports/fulltext/S2211-1247(14)00298-8ncbi.nlm.nih.gov/pubmed/11669583
ncbi.nlm.nih.gov/pubmed/15032646
ncbi.nlm.nih.gov/pubmed?cmd=Search&doptcmdl=Citation&defaultField=Title%20Word&term=Liva%5Bauthor%5D%20AND%20Testosterone%20acts%20directly%20on%20CD4%2B%20T%20lymphocytes%20to%20increase%20IL-10%20production
ncbi.nlm.nih.gov/pubmed/14523355
ncbi.nlm.nih.gov/pubmed/7485382
sciencedirect.com/science/article/pii/S104346661200748X
jni-journal.com/article/S0165-5728(12)00042-2/abstract
ncbi.nlm.nih.gov/pmc/articles/PMC2219342/
intimm.oxfordjournals.org/content/early/2009/03/30/intimm.dxp033.full.pdf
ncbi.nlm.nih.gov/pubmed/12810348
ncbi.nlm.nih.gov/pmc/articles/PMC3197781/
nature.com/jid/journal/v130/n5/fig_tab/jid2009399f6.html#figure-title
ncbi.nlm.nih.gov/pubmed/19706421
ncbi.nlm.nih.gov/pmc/articles/PMC3057866/
ncbi.nlm.nih.gov/pubmed/18217957
ncbi.nlm.nih.gov/pubmed/23261528
ncbi.nlm.nih.gov/pubmed/23606540
ncbi.nlm.nih.gov/pubmed/18780875
ncbi.nlm.nih.gov/pubmed/10900347
ncbi.nlm.nih.gov/pubmed/20406305
ncbi.nlm.nih.gov/pubmed/24446278
ncbi.nlm.nih.gov/pubmed/22983634
en.wikipedia.org/wiki/Th1_cell#Determination_of_the_effector_T_cell_responsencbi.nlm.nih.gov/pubmed/15162133
ncbi.nlm.nih.gov/pubmed/14624943
ncbi.nlm.nih.gov/pubmed/11261793
ncbi.nlm.nih.gov/pubmed/10541049
ncbi.nlm.nih.gov/pubmed/18520337
ncbi.nlm.nih.gov/pubmed/22342904
www.jstage.jst.go.jp/article/bpb/29/6/29_6_1148/_article
ncbi.nlm.nih.gov/pmc/articles/PMC3504646/
ncbi.nlm.nih.gov/pubmed/19764067
ncbi.nlm.nih.gov/pubmed/21520494
ncbi.nlm.nih.gov/pmc/articles/PMC2269703/
ncbi.nlm.nih.gov/pubmed/16799967
ncbi.nlm.nih.gov/pubmed/24936267
ncbi.nlm.nih.gov/pubmed/17888472
ncbi.nlm.nih.gov/pubmed/6201571
ncbi.nlm.nih.gov/pubmed/23811143
ncbi.nlm.nih.gov/pubmed/22674882
jleukbio.org/content/69/3/449.long
ncbi.nlm.nih.gov/pubmed/11261793
ncbi.nlm.nih.gov/pmc/articles/PMC3648912/
hindawi.com/journals/ecam/2011/525462/
ncbi.nlm.nih.gov/pmc/articles/PMC3057159/
ncbi.nlm.nih.gov/pubmed/21451725
ncbi.nlm.nih.gov/pubmed/17466913
ncbi.nlm.nih.gov/pubmed/20210607
ncbi.nlm.nih.gov/pmc/articles/PMC2945480/
www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2005-869672
ncbi.nlm.nih.gov/pubmed/6201571
jimmunol.org/cgi/content/meeting_abstract/186/1_MeetingAbstracts/163.11
ncbi.nlm.nih.gov/pubmed/20013886
sciencedirect.com/science/article/pii/S1590865813006579
ncbi.nlm.nih.gov/pubmed/15261965
ncbi.nlm.nih.gov/pubmed/19425822
ncbi.nlm.nih.gov/pubmed/12446015
jimmunol.org/content/168/9/4495.full.html
bloodjournal.org/content/111/3/1013?sso-checked=truevir.sgmjournals.org/content/29/3/315.full.pdf
ncbi.nlm.nih.gov/pmc/articles/PMC3057866/
ncbi.nlm.nih.gov/pmc/articles/PMC2753891/?report=classicncbi.nlm.nih.gov/pmc/articles/PMC3377272/
ncbi.nlm.nih.gov/pubmed/16782805
ncbi.nlm.nih.gov/pubmed/15276069
ncbi.nlm.nih.gov/pubmed/17713031
link.springer.com/article/10.1007%2FBF02977791#page-1
ncbi.nlm.nih.gov/pubmed/21830187
ncbi.nlm.nih.gov/pubmed/24487035
opus.bath.ac.uk/18381/
ncbi.nlm.nih.gov/pubmed/23760007
ncbi.nlm.nih.gov/pmc/articles/PMC3419913/#b23
onlinelibrary.wiley.com/enhanced/doi/10.1002/eji.200323010/?isReportingDone=true
ncbi.nlm.nih.gov/pubmed/23285134
ncbi.nlm.nih.gov/pmc/articles/PMC3563707/
ncbi.nlm.nih.gov/pubmed/22180146
ncbi.nlm.nih.gov/pubmed/16417775
ncbi.nlm.nih.gov/pubmed/23701595
ncbi.nlm.nih.gov/pubmed/9808189
ncbi.nlm.nih.gov/pubmed/16406805
jimmunol.org/content/175/11/7202.full.pdf
ncbi.nlm.nih.gov/pubmed/24176234
ncbi.nlm.nih.gov/pubmed/25269538
ncbi.nlm.nih.gov/pubmed/20034219
ncbi.nlm.nih.gov/pubmed/12429374
ncbi.nlm.nih.gov/pmc/articles/PMC2639244/
ncbi.nlm.nih.gov/pubmed/24447171
ncbi.nlm.nih.gov/pubmed/24412705
ncbi.nlm.nih.gov/pubmed/20889543
ncbi.nlm.nih.gov/pubmed/10606356
ncbi.nlm.nih.gov/pubmed/24447171
informahealthcare.com/doi/abs/10.3109/08923973.2013.768636
hindawi.com/journals/ecam/2013/972814/
nature.com/jid/journal/v130/n5/full/jid2009399a.html
ncbi.nlm.nih.gov/pubmed/23550596
ncbi.nlm.nih.gov/pubmed/10996033
ncbi.nlm.nih.gov/pubmed/20622114
ncbi.nlm.nih.gov/pmc/articles/PMC2965405/
sciencedirect.com/science/article/pii/S0378874111004387
ncbi.nlm.nih.gov/pubmed/17947392
ncbi.nlm.nih.gov/pubmed/22982753
ncbi.nlm.nih.gov/pubmed/19555200
ncbi.nlm.nih.gov/pubmed/20718737
ncbi.nlm.nih.gov/pmc/articles/PMC4023824/
ncbi.nlm.nih.gov/pubmed/19679109
unboundmedicine.com/medline/citation/24487736/p_Synephrine_suppresses_lipopolysaccharide_induced_acute_lung_injury_by_inhibition_of_the_NF_%CE%BAB_signaling_pathway_
ncbi.nlm.nih.gov/pmc/articles/PMC3419913/
ncbi.nlm.nih.gov/pubmed/23559222
ncbi.nlm.nih.gov/pubmed/20233107
plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0027006
plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0047244
ncbi.nlm.nih.gov/pubmed/15765388
ncbi.nlm.nih.gov/pubmed/20548777
plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0095441
ncbi.nlm.nih.gov/pmc/articles/PMC3500876/
ncbi.nlm.nih.gov/pubmed/24038094
jid.oxfordjournals.org/content/182/Supplement_1/S62.full.pdf
ncbi.nlm.nih.gov/pubmed/10947158
ncbi.nlm.nih.gov/pubmed/19505402
ncbi.nlm.nih.gov/pubmed/19656571researchgate.net/publication/51806603_Effects_of_acute_stress-induced_immunomodulation_on_TH1TH2_cytokine_and_catecholamine_receptor_expression_in_human_peripheral_blood_cells
ncbi.nlm.nih.gov/pubmed/23261528
books.google.com/books?id=X3DK4nWybaMC&pg=PA309&lpg=PA309&dq=amino+acids+th1&source=bl&ots=J7z5B8zBdm&sig=7oHzgYfYyxRq9GuiwoEpIypNAag&hl=en&sa=X&ei=WqCfU96GIsiosASj14CwCw&ved=0CCcQ6AEwAQ#v=onepage&q=amino%20acids%20th1&f=false
ncbi.nlm.nih.gov/pubmed/9696695
ncbi.nlm.nih.gov/pubmed/24361893
ncbi.nlm.nih.gov/pmc/articles/PMC3206174/
ncbi.nlm.nih.gov/pmc/articles/PMC3938879/
ncbi.nlm.nih.gov/pubmed/23258605
ncbi.nlm.nih.gov/pubmed/11390207
ncbi.nlm.nih.gov/pubmed/7769259
ncbi.nlm.nih.gov/pubmed/10036693
iovs.org/content/38/12/2483
ncbi.nlm.nih.gov/pubmed/24090439
pnas.org/content/early/2010/04/15/0912817107.full.pdfhttp://agris.fao.org/agris-search/search.do?recordID=US201300779223
ncbi.nlm.nih.gov/pmc/articles/PMC347515/
ajcn.nutrition.org/content/69/6/1273.full
jbc.org/content/285/5/2951.long
ncbi.nlm.nih.gov/pmc/articles/PMC347515/
ncbi.nlm.nih.gov/pubmed/17263454http://link.springer.com/chapter/10.1007%2F978-94-017-0726-8_69ncbi.nlm.nih.gov/pubmed/22913724
ncbi.nlm.nih.gov/pubmed/20198430
fasebj.org/content/28/1_Supplement/916.6.short
ncbi.nlm.nih.gov/pubmed/22917938ncbi.nlm.nih.gov/pubmed/19783706
researchgate.net/publication/225175430_Fruit-specific_lectins_from_banana_and_plantain
sciencedirect.com/science/article/pii/S187439000700002X
researchgate.net/publication/44569721_Immunomodulatory_and_antiviral_activity_of_almond_skins
ncbi.nlm.nih.gov/pubmed/21214022
ncbi.nlm.nih.gov/pubmed/19221048
ijppsjournal.com/Vol2Issue4/687.pdf
plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0100394http://connection.ebscohost.com/c/articles/51973576/preliminary-immunomodulatory-activity-aqueous-ethanolic-leaves-extracts-ocimum-basilicum-linn-mice
ncbi.nlm.nih.gov/pubmed/17306834
jn.nutrition.org/content/early/2012/06/26/jn.112.159467.full.pdf
ncbi.nlm.nih.gov/pubmed/23036811
ncbi.nlm.nih.gov/pmc/articles/PMC3349139/
ncbi.nlm.nih.gov/pubmed/23980846
ncbi.nlm.nih.gov/pubmed/19857063
nutritionj.com/content/12/1/161
ncbi.nlm.nih.gov/pubmed/15942138
ncbi.nlm.nih.gov/pubmed/20079411
ncbi.nlm.nih.gov/pubmed/11367535
ncbi.nlm.nih.gov/pubmed/12501013
biomedcentral.com/content/pdf/1471-2172-12-31.pdf
ncbi.nlm.nih.gov/pubmed/16398597
mycologyresearch.com/pdf/articles/Martin_Powell.pdf
pubs.acs.org/doi/abs/10.1021/jf405223q
scialert.net/fulltext/?doi=pjbs.2012.754.774
ncbi.nlm.nih.gov/pubmed/15719157
ncbi.nlm.nih.gov/pubmed/20210607
ncbi.nlm.nih.gov/pmc/articles/PMC3719261/
unboundmedicine.com/medline/citation/21936496/A_matured_fruit_extract_of_date_palm_tree__Phoenix_dactylifera_L___stimulates_the_cellular_immune_system_in_mice_
ncbi.nlm.nih.gov/pmc/articles/PMC3738975/
ncbi.nlm.nih.gov/pubmed/20453453
agris.fao.org/agris-search/search.do?recordID=US201300779223
erbeofficinali.org/dati/nacci/studi/Il%20Nunu%20(Morinda%20citrifolia)%20attiva%20contro%20il%20tumore%20al%20cervello%20(3).pdf
scialert.net/fulltext/?doi=pjbs.2012.754.774
pubmedcentralcanada.ca/pmcc/articles/PMC2915836/#S16
ncbi.nlm.nih.gov/pubmed/12575168
ncbi.nlm.nih.gov/pubmed/14988219
ncbi.nlm.nih.gov/pmc/articles/PMC2387240/
ncbi.nlm.nih.gov/pubmed/23213313
ncbi.nlm.nih.gov/pubmed/10600341
ncbi.nlm.nih.gov/pmc/articles/PMC3719261/
ncbi.nlm.nih.gov/pubmed/17150331
ncbi.nlm.nih.gov/pubmed/22160132
ncbi.nlm.nih.gov/pubmed/6191691
nature.com/ncomms/2014/141007/ncomms6101/full/ncomms6101.html
ncbi.nlm.nih.gov/pubmed/15162133
web.archive.org/web/20141022101257/
animal-science.org:80/content/87/3/1042.full
ncbi.nlm.nih.gov/pubmed/21394811
link.springer.com/article/10.1007/s12011-014-9958-y
ncbi.nlm.nih.gov/pubmed/19254479
ncbi.nlm.nih.gov/pubmed/22849818
Pałeczka ropy błękitnej jest dość popularną bakterią występującą u ludzi z mukowiscydozą (parę zdań o mukowiscydozie wspomniałem już tutaj) powodując bardzo poważne zakażenia, w najgorszym wypadku śmierć(może wywołać sepsę). Najczęstszym miejscem zakażenia się tą bakterią są szpitale. Problem w tym, że obecnie bakteria ta jest już na tyle odporna na antybiotyki, że zabieranie się za nią konwencjonalną chemią na nie wiele się zda, a to między innymi za sprawą nie tylko antybiotykooporności, ale i głównie za sprawą jej błony/membrany(składającej się z białka OprH), która jest znacznie mniej przepuszczalna niż np. otoczka bakterii e.coli. Na dodatek bakteria tworzy specyficzny dla siebie biofilm przez który nie przedostanie się żaden antybiotyk czy komórki układu odpornościowego + na dodatek wytwarza toksyny, które dodatkowo pogłębiają problemy zdrowotne + posiada specjalne enzymy które dezaktywują antybiotyki np. z grupy cefalosporyn. P. aeruginosa ma duże zdolności adaptacyjne, dlatego może wywoływać różne zakażenia, np. dróg oddechowych, moczowych, skóry i tkanek miękkich, ucha, oka, bakteriemie oraz zapalenie wsierdzia. Należy z nią zatem walczyć poprzez zakłócenie komunikacji między bakteryjnej quorum sensing(o której pisałem już tutaj), redukcje jej biofilmu, stosowanie substancji/ziół które bezpośrednio oddziałują na bakterie-niszcząc ją oraz wzmacniać odpowiedź komórkową układu odpornościowego, aby wspomóc suplementy/zioła w eliminacji bakterii jak i nie dopuszczeniu do ponownego rozrostu liczebności bakterii.
Kilka słów o toksynie, którą wytwarza pałeczka ropy błękitnej:
Pyocyanin – toksyna którą wytwarza pałeczka ropy błekitnej, pozwala funkcjonować tej bakterii w płucach ludzi z mukowiscydozą i jest często u nich wykrywana. Pyocyanin zakłóca funkcję nabłonka rzęskowego układu oddechowego przez co jest problem z wydalaniem wydzieliny. Dodatkowo powoduje śmierć neutrofili, wytwarzanie się immunoglobuliny oraz limfocytów B jak i także cytokiny zapalnej IL-8 i CCL5 co maksymalnie osłabia układ odpornościowy płuc. W badaniach wykazuje właściwości grzybobójcze przez co jest bakteria dominującą wśród mikroorganizmów występujących w płócach osób z mukowiscydozą. Dodatkowo zaburza koncentracje ATP(od którego zależy cAMP) co powoduje uszkodzenia kanału CFTR(pisałem już o nim więcej tutaj).
Odnośnie protokołu leczniczego:
Przyznaje się, że nie posegregowałem wszystkiego według założeń które wyżej wymieniłem. To zadanie zostawię Tobie bo nie sądzę, że będziesz w stanie nawet połowy z tych preparatów po prostu dostać. Jeśli miałbym coś podpowiedzieć wybrałbym ze 3 preparaty stymulujące układ odpornościowy, 2 na biofilm bakteryjny, 2 na zahamowanie komunikacji quorum sensing i 3 bezpośrednio niszczące samą bakterie(wśród wszystkich tych preparatów dobrze by było uwzględnić takowe które pokryją ze 2 z w/w aspektów + blokowanie wytwarzania toksyny przez omawianą bakterię). Bez względu jaka to jest bakteria polecam zmianę produktów w najgorszym wypadku co 4 tygodnie (lepiej nawet częściej) w celu nie dopuszczenia do uodpornienia się bakterii na jakikolwiek związek.
Żurawina – wykazuje właściwości hamujące quorum sensing pałeczki ropy błękitnej, hamuje wirulencję i tworzenie biofilmu jak i jej rozprzestrzenianie się.
Delfinidyna – związek z gupy antycyjanidów, w badaniach wykazuje zdecydowanie lepszą zdolność do blokady komunikacji quorum niż antybiotyk ampicilina czy też streptomycyna – występuje w kwiecie malwy różowej(Alcea rosea), w owocu borówki(Vaccinium myrtillus), w Ketmi – Hibiscus sabdariffa – kwiat i Ślazie dzikim – Malva sylvestris kwiat.
Sanguinello – pomarańcza krwista(odmiana włoska) – wykazuje dobre działanie antybakteryjne(zwłaszcza olejek) przeciwko nie tylko pałeczce ropy błękitnej, ale
i również przeciwko gronkowcowi złocistemu czy też vs L. monocytogenes (Listeria monocytogenes).
Glycyrrhiza glabra(Lukrecja gladka) – wykazuje bardzo dobre właściwości antybakteryjne(chodzi o glycyrrhizic acid w niej zawarty) vs pałeczka ropy błękitnej,
wyższe niż antybiotyk Amikacin.
Imbir oraz Mięta pieprzowa – także wykazują dobre działanie(z badania z tego co powyżej uwzględniającego Lukrecję)
Ekstrakt z kwiatów E. elatior(Etlingera wyniosła) – wykazuje działanie nie tylko vs Pseudomonas aeruginosa ale także vs Staphylococcus aureus(gronkowiec złocisty(, bacillus subtilis, listeria monocytogenes, e.coli, salmonella. Roślina ta posiada również właściwości antynowotworowe.
Rosa canina l.(Dzika róża) – Związki które wykazują działanie bakteriobójcze wobec pałeczki to isoquercetin i isorhamnetin-3-O-rutinoside. Alkoholowy wyciąg z liści rosa canina l. wykazuje dobre antybakteryjne działanie vs pałeczka ropy błękitnej oraz vs salmonella typhimurium.(działanie mocniejsze od antybiotyków takich jak streptomycyna i ampicillin). Nalewka z tej rośliny nie tylko posiada właściwości niszczące bezpośrednio aktywną bakterie pałeczki r.b. ale i również wykazuje bardzo silne właściwości niszczące biofilm tej bakteri jak i również biofilm bakterii e.coli, leishami (leishmania monocytogenes) czy tez gronkowca złocistego.
Nymphaea tetragona (water lily)/Lilia wodna – w badaniach ekstrakt alkoholowy (na alkoholu 50%) wykazuje zahamowanie ruchliwości(komunikacja quorum) bakterii pałeczki ropy błękitnej o minimum 70%.
Coriandrum sativum L.(Kolendra siewna) – główne składniki linalool, geranyl acetate oraz terpinene wykazuja b.dobre(nalewka alkoholowa oraz olejek) właściwości antybakteryjne vs candida albicans, staphylococcus auereus, e.coli i naturalnie pseudomonas aeruginosa.
Quercus Coccifera’s aqueous(Dąb skalny) – nalewka alkoholowa(najlepiej z kory) wykazała bardzo silne właściwości antybakteryjne vs gronkowiec złocisty oraz pałeczka ropy .błękitnej.
Rhizoma Menispermi/Menisperum dauricum/Korzeń miesięcznika – znacząco polepsza problemy ze stanem zapalnym płuc(niezbędne u ludzi z mukowiscydozą) poprzez tłumienie odpowiedzi zapalnej – NFkappaB, cytokin zapalnych IL-6 i IL-8.
Centella asiatica L.(wąkrotka azjatycka) – blokuje komunikacje quorum C.violaceum. Blokuje produkcje toksyny pyocyjaniny wytwarzanej przez pałeczkę r.b., blokuje komunikacje quorum jak i możliwość tworzenia biofilmu przez pałeczkę.
Phyllanthus amarus(Liściokwiat) – blokuje komunikację quorum sensing bakterii, redukuje jej ruchliwość, wytwarzanie toksyny (pyocyaniny).
Ligusticum mutellina L.(marchwica pospolita) – pseudomonas aeruginosa oraz candida są bakteriami wrażliwymi na alkoholowe nalewki z tego ziela.
Kacip Fatimah Labisa pumila Benth. – Malezyjska roślinka, łodyga, korzeń i liście wykazują dobre działanie vs Micrococcus luteus, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterobacter aerogenes, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa. Roślinka wykazuje umiarkowane działanie grzybobójcze vs fusarium i Candida.
Papaya – owoc,nasiona i sama pulpa Carica papaya Linn. wykazują właściwości bakteriostatyczne vs Bacillus subtilis, Enterobacter cloacae, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa i Klebsiella pneumoniae.
Willow herb (Epilobium angustifolium)(Wierzbownica) – w medycynie ludowej używana do leczenia problemów z prostatą, problemów układu pokarmowego oraz w leczeniu skaleczeń/ran. Posiada właściwości bakteriobójcze(hamuje rozrost) takich bakterii jak micrococcus luteus, gronkowiec złocisty, e.coli, pseudomonas aeruginosa. Wykazuje działanie skuteczniejsze od wankomycyny i tetracykliny.
Sophora flavescens(Ku Shen)(Szupin) – zwiększa produkcję interferonu gamma w płócach szczurów zwiększając tym samym odpowiedź komórkową układu odpornościowego.(Th1) przyczyniając się do leczenia infekcji pałeczką ropy błękitnej.
Andrographis – Andrografolid – substancja zawarta w andrografisie wykazuje właściwości hamujące quorum sensing bakterii pałeczki b. oraz formowanie się biofilmu. Więcej o andrographisie pisałem już tutaj.
Kora cynamonowca – cinnamaldehyd oraz olejek z kory cynamonowca wykazują bardzo dobre działanie vs E. coli, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa, Vibrio cholerae, Vibrio parahaemolyticus i Samonella typhymurium oraz vs grzyby Candida takie jak C. albicans, C. tropicalis, C. glabrata, i C. krusei.
Euphorbia fusiformis Buch.-Ham. ex. D.Don (Euphorbiaceae) (nalewka z korzenia wilczomleczu) – wykazuje dobre właściwości antybakteryjne vs. Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhii A i Salmonella typhii B.
Persicaria senegalense (Polygonaceae) – ekstrakty z liścia w dużych dawkach wykazują bardzo wysoki % wyleczenia w infekcjach bakteryjnych/grzybicznych Staphylococcus aureus, Candida albicans, Corynebacterium bovis i Pseudomonas aeruginosa.
Trianthema decandra – nalewka alkoholowa wykazuje porównywalne antybakteryjne działanie z chloramphenicol przeciwko staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Proteus vulgaris .
Landolphia owerrience – nalewka alkoholowa z korzenia wykazuje b.dobre właściwości antybakteryjne vs. Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi i Bacillus subtilis.
Olejek z Oregano, kolendry oraz bazylii – bardzo wysoka moc rażenia w eliminacji takich bakterii jak Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Yersinia enterocolitica, Pseudomonas aeruginosa, Lactobacillus plantarum, Aspergillus niger, Geotrichum, i Rhodotorula.
Żeńszeń chiński – w badaniu na szczurach z infekcją płóc zbliżoną/naśladująca mukowiscydozę zastosowano ekstrakt z żeńszenia chińskiego(szczury były zainfekowane pałeczką ropy błękitnej która spowodowała objawy mukowiscydozo-podobne). Żeńszeń zmniejszył poziom komórek tucznych w płucach oraz odpowiedź humoralną układu odpornościowego. W badaniu udowodniono, że szczury karmione żeńszeniem chińskim wykazują oporność na infekcję płócną P.aeruginosa. W innym badaniu wykazano, że żeń-szeń redukuje biofilm Pseudomonas aeruginosy o 39-56%.
Zingerone(związek z Imbiru) – znacząco zmniejsza warstwę biofilmu jakim pałeczka ropy błękitnej się otacza dzięki czemu reszta preparatów wykazuje silniejsze działanie.
Argentine herb Centratherum punctatum – hamuje wirulencję pseudomonas aeruginosa, komunikację quorum i tworzenie się biofilmu.
Rubus parvifolius L.(Jeżyna nuktajska) – olejek z tego ziela efektywnie hamuje wzrost Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae i Klebsiella pneumoniae.
The twigs of Dorstenia mannii Hook(Dorsenia) – nalewka na alkoholu wykazuje b.dobre działanie bakteriobójcze vs pałeczka ropy błękitnej.
A co zwiększa limfocyty Th1(odpowiedź komórkową)?To temat na kolejny artykuł(za kilka tyg.).
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
ncbi.nlm.nih.gov/pubmed/27503003
ncbi.nlm.nih.gov/pmc/articles/PMC3403998/
ncbi.nlm.nih.gov/pubmed/22925726
ncbi.nlm.nih.gov/pubmed/23831483
ncbi.nlm.nih.gov/pubmed/24086697
ncbi.nlm.nih.gov/pubmed/9236860
ncbi.nlm.nih.gov/pubmed/11456186
ncbi.nlm.nih.gov/pubmed/11694355
ncbi.nlm.nih.gov/pubmed/22557045
ncbi.nlm.nih.gov/pubmed/27083519
ncbi.nlm.nih.gov/pubmed/27539815
ncbi.nlm.nih.gov/pubmed/27535797
ncbi.nlm.nih.gov/pubmed/27532487
ncbi.nlm.nih.gov/pubmed/26399961
ncbi.nlm.nih.gov/pubmed/26399901
ncbi.nlm.nih.gov/pubmed/26325430
ncbi.nlm.nih.gov/pubmed/25829632
ncbi.nlm.nih.gov/pubmed/25512685
ncbi.nlm.nih.gov/pubmed/25252930
en.wikipedia.org/wiki/Pyocyanin
ncbi.nlm.nih.gov/pubmed/24856426
ncbi.nlm.nih.gov/pubmed/24169540
ncbi.nlm.nih.gov/pubmed/22724452
ncbi.nlm.nih.gov/pubmed/21623314
ncbi.nlm.nih.gov/pubmed/8412504
ncbi.nlm.nih.gov/pubmed/21208973
ncbi.nlm.nih.gov/pubmed/20423004
ncbi.nlm.nih.gov/pubmed/19152987
ncbi.nlm.nih.gov/pubmed/16710900
ncbi.nlm.nih.gov/pubmed/17672335
ncbi.nlm.nih.gov/pubmed/16159702
ncbi.nlm.nih.gov/pubmed/11770205
ncbi.nlm.nih.gov/pubmed/22732887
zakazenia.org.pl/index.php?okno=7&id=1116&art_type=10
To że niezbędna jest równowaga pomiędzy kwasami omega 3 i 6 w stylu 3:1 lub nawet 1:1 już nie raz słyszałeś. Że zachód(a zwłaszcza USA) spożywa tłuszcze w proporcji coś w stylu 10,15 czy nawet 20:1 omega 6 do 3 zapewne też. No i to że olej lniany zawiera idealną proporcję o3 do o6 też już wiesz ….tylko martwi Cie, że konwersja kwasu ALA do EPA/DHA to coś pomiędzy 5 a 20% i dlatego olej lniany nie jest najlepszym z najlepszych olei – postaram się omówić absolutnie wszystkie prozdrowotne właściwości (na podstawie badań) tego oleju i na koniec zdradzę Ci jak maksymalnie zwiększyć konwersje ALA do EPA/DHA tak, że nie będziesz miał już żadnych dylematów w stwierdzeniu że ten olej jest prawdziwym królem wśród olei.
Faktem jest iż zwiększona ilość spożywanego omega 6 nad omega 3 powoduje choroby neurodegeneracyjne i demencję. Dzieje się to ze względu na kwas arachidonowy który powstaje w organiźmie z kwasu linolowego (składnik olejów warzywnych) – w dużych steżeniach powoduje kwasicę wewnątrzkomórkowa i rozprzęga fosforylacje oksydacyjną. Dochodzi do wzmożonej generacji wolnych rodników tlenowych i apoptozy komórek. Metabolity oksydacji kwasu arachidonowego zaburzają pracę mitochondriów komórek i hamują aktywność pomp sodowo-potasowych przez co dochodzi do zaburzenia przewodnictwa i wzmożonej aktywacji receptorów glutaminergicznych NMDA. Powoduje to duży skok wapnia zjonizowanego i uaktywnienie apoptozy. Wolne rodniki tlenowe oraz kwas arachidonowy zwiększają aktywność czynnika jądrowego NF-kappaB, który kontroluje ekspresję genów prozapalnych aktywujących cytokiny prozapalne takie jak TNF-alfa, IL2, IL6. Dochodzi do powstawania zapaleń w ośrodkowym układzie nerwowym i neurodegenracji(nazywaną burzą arachidonową). Do takich zapaleń przyczyniają się również metabolity kwasu arachidonowego(leukotrieny i prostaglandyny zwłaszcza prostaglandyna E tzw.PGE2). Nasila się aktywnośc gamma sekretazy i odkładanie beta amyloidu (puk puk Alzheimer 🙁 ).
DHA i EPA(do których konwertuje kwas ALA zawarty w oleju lnianym) hamują sygnał komórkowy kwasu arachidonowego i jego uwalnianie z glicerofosfolipidów co skutkuje zahamowaniem zapalenia. EPA wbudowywuje się w błony mitochondrium stabilizując je i hamuje wydzielanie cytochromu C. Metabolity EPA i DHA (rezolwiny serii E i D oraz neuroprotektyna D1 jak i marezyny) posiadają silne właściwości przeciwzapalne hamując infiltrację leukocytów oraz nasilają aktywność makrofagów. Powoduje to zahamowanie migracji komórek układu odpornościowych do ognisk zapalnych. Kwasy omega 3 hamują aktywność mikrogleju i wykazują działanie neuroprotekcyjne(zahamowanie mikrogleju następuje poprzez aktywacje alfa sekretazy oraz hamowanie beta i gamma sekretaz). Omega 3 hamują sygnał proapoptotyczny, neurotoksyczność beta amyloidu oraz kinazy fosforyzujące biało tau. Neuroprotektyna D1 natomiast hamuje wolnorodnikową aktywację kaspazy 3 i działa silnie neuroprotekcyjnie w stresie oksydacyjnym. Hamuje aktywność COX2 która jest silnie aktywna w chorobie Alzheimera.
DHA zwiększa ilość białka L11 (receptor ApoE) które redukuje transport prekursora beta amyloidu do miejsca działania sekretaz co obniża stężenie beta amyloidu. Omega 3 nasilają aktywność insulinopodobnego czynnika wzrostu IGF-1, który ma działanie neuroprotekcyjne oraz obniżają poziomy trójglicerydów(wg.badań dzienne spożycie -4g DHA/EPA obniża poziom trójglicerydów od 20 do 50procent – w najgorszym możliwym wariancie jest to 40ml oleju lnianego tj.zakładając że masz bardzo słabą konwersję kwasu ALA do DHA/EPA) jak i także podwyższają poziom HDL a obniżają LDL oraz obniżają ciśnienie krwi. O3 w chorobie Parkinsona zmniejszają występowanie późnych dyskinez podczas leczenia L-DOPA i chronią przed nęurotoksycznością MPTP. L-DOPA podnosi poziom kwasu arachidonowego u chorych na chorobę Parkinsona także duża podaż omega-3 poradzi sobie z nadmierną ilością tego kwasu.
Właściwości oleju lnianego:
– W wielu badaniach wykazano, że ALA pobudza komórki do produkcji znacząco wyższych ilości glutationu o ok.70%(odpowiedzialny za walkę z wirusami i chelatację z metali ciężkich). Wzrost ten zaobserwowano zarówno w testach in vivo, jak i in vitro (Han i in., 1995).
– ALA działa ochronnie na wątrobę dzięki mechanizmowi, w ramach którego zwiększa poziom cysteiny, która jest wykorzystywana do syntezy glutationu
– ALA jest niezbędnym koenzymem w metabolizmie tłuszczów i węglowodanów w celu wytworzenia ATP (cząsteczki energetycznej występującej w komórkach). Aby tłuszcze i węglowodany mogły uczestniczyć w cyklu Krebsa w komórkach niezbędne jest oddziaływanie na nie przez ALA. Poprawia on wychwytywanie glukozy w komórkach mięśni, które następnie wykorzystują ją do produkcji energii(inaczej mówiąć zwiększa czułość komórek na insulinę-transportera glukozy)
– Jak wykazano na zwierzętach, kwas zapewnia ochronę przed tworzeniem się zaćmy. wiąże się to ze zwiększaniem poziomów istotnych endogenicznych enzymów przeciwutleniających, takich jak preoksydaza glutationowa.
– Pewna próba przeprowadzona na zwierzętach z retinopatią barwnikową (chorobą oczu, która dotyka również ludzi) ujawniła, że połączenie kwasu liponowego i witaminy E pomaga zapobiec obumarciu komórek siatkówki
– Dostarczany do komórek szpiku kostnego i osteoblastów (komórek tworzących kości) kwas liponowy zahamował formację degradujących kości osteoklastów (komórek kościogubnych) w sposób zależny od dawki. Zredukował również proces utraty kości wywołany przez zapalenie, zarówno w laboratorium jak i u żywych organizmów. Zdolności kwasu liponowego do zapobiegania utraty kości wiążą się z jego blokującymi efektami na prozapalne prostaglandyny E2 i zapalne cytokiny TNF.
– Pośród niezliczonych korzyści kwasu liponowego, naukowcy odkryli, że może on być również stosowany w celu poprawy zdrowia skóry. Badanie obejmujące 33 kobiet z przeciętnym wiekiem 54 lat pokazało, że dwa razy dzienne stosowanie kremu zawierającego 5% kwasu liponowego przez trzy miesiące zmniejszyło szorstkość skóry i oznaki fotostarzenia się.
– Zaleca się spożywanie przez kobiety w ciąży EPA/DHA ze względu na ich funkcję w prawidłowym rozwoju mózgu i układu nerwowego nienarodzonego płodu
– Omega 3 wzmaga produkcję dopaminy i serotoniny
– Olej lniany wykazuje skuteczne działanie w przypadku drętwienia i mrowienia kończyn
– Lignany zawarte w oleju lnianym wykazują właściwości hamujące enzym 5-alfa-reduktazy dzięki któremu można powstrzymać łysienie androgenne(szerzej o tym pisałem tutaj)
– Omega 3 pozytywnie wpływają na odtłuszczanie wątroby oraz redukcję ogólnej tkanki tłuszczowej organizmu(Badania przeprowadzone przez naukowców z Uniwersytetu w Barcelonie, opublikowane przez „The FASEB Journal”)
– Omega 3 pozytywnie wpływają w przypadku leczeniu egzem czy też łuszczycy
– Kwasy omega 3 zmniejszają ryzyko przedwczesnego porodu
– Badania dowodzą, że olej lniany korzystnie wpływa na objawy PMS takie jak bolesność piersi, zatrzymanie wody w organiźmie i zmiany nastroju.
– Kwasy Omega-3 zawarte w oleju lnianym zapobiegają migrenowym bólom głowy
– Podawanie kwasu liponowego zwiększa poziom witaminy C w komórkach (Shay i in., 2009).
– Olej lniany posiada właściwości ochronne przed uszkodzeniami powstałymi w wyniku promieniowania w kompleksie palladu (Ramachandran i in., 2010)
– Olej lniany posiada właściwości ochronne przeciwko gastropatii indukowanej przez NLPZ (Kaplan i in., 2012)
– ALA wzmacnia działanie koenzymu Q10
– ALA Konwertuje węgle,białka i tłuszcze w energie przy współudziale witamin z grupy B
– ALA ma właściwości ochronne przed efektem romzycia obrazu(zmętnienie soczewki oka) oraz przed zaćmą i jaskrą(na wszystkie te choroby ma wpływ stres oksydacyjny)
– Badania wykazują że już tak małe dawki jak 150mg dzienie wykazuje poprawę u osób z jaskrą
– ALA redukuje neuropatie cukrzycową tj.drętwienia,swędzenia,uczucie mrowienia oraz ból kończyn który często opisywany jest jako 'palenie’ kończyn
– ALA zwiększa produkcję acetylocholiny (neuroprzekaźnika układu nerwowego)
– Wg.badań ALA w dawce 600mg dziennie zmniejszył częstotliwość i intensywność migren po 3 miesiącach
– Kwas liponowy wykazuje przeciwbólowe działanie przy przewlekłych bólach krzyżowych , przy radikulopatii, działając synergicznie z kwasem gamma-linolenowym oraz przy przewlekłych bólach szyi. Wszystkie badania były przeprowadzone na ludziach.
– ALA naliniach komórkowych replikację HIV
– Wykazano na świnkach morskich, że kwas liponowy ogranicza uszkodzenia wywołane urazem akustycznym(hałasem). W innym eksperymencie podawano kwas liponowy myszom po urodzeniu i grupie kontrolnej, która go nie dostawała. U osobników otrzymujących ów związek obserwowano znacznie lepszy słuch. W innym badaniu sprawdzono wpływ m.in. kwasu liponowego przy podaniu przed narażeniem na bodziec, w efekcie kwas liponowy zmniejszał stres oksydacyjny w ślimaku i obniżał poziom śmiertelności komórek włosowych u zwierząt, u których wywołano uraz akustyczny.
– Przeprowadzono badanie na pacjentach z ostrym zapaleniem wieńcowym. Jednej grupie podawano dożylnie placebo (sól fizjologiczną), drugiej grupie natomiast kwas liponowy w dawce 600 mg dziennie przez 5 dni. Po wykonaniu analiz biochemicznych okazało się, że kwas liponowy znacznie podnosił poziom dehydrogenazy aldehydowej-2 (utlenia ona aldehyd octowy który z kolei przekształca się do kwasu karboksylowego który neutralizuje etanol-alkohol).
– ALA hamuje aktywację metaloproteinazy 9 (odpowiedzialna międzyinnymi za zapalenia stawów w chociażby Boreliozie) już przy dawkach rzędu 1.2grama x2 dziennie.
– ALA jest bardzo pomocne przy chorobie Huntingtona.
– ALA w badaniach na myszach wykazał właściwości przeciwdrgawkowe
– ALA ochrania komórki nerwowe przed peroksydacją lipidów wywoływaną obecnością rtęci oraz wykazuje właściwości ochronne przed metylortęcią
– ALA działa ochronnie komórek przed ołowiem
– ALA w badaniach wykazuje działanie przeciwnowotworowe w przypadku nowotworów krwi (białaczka), płuc, piersi i wątroby(spowalnia lub całkowicie zatrzymuje rozwój guza)
– Kwas liponowy może zapobiec rozprzestrzenieniu się przerzutów przez zmniejszenie aktywności enzymów, które guz używa do atakowania tkanek
– U osób, które zdecydują się na chemioterapię, kwas liponowy, dzięki swoim zdolnościom przeciwutleniającym, może efektywnie chronić przed niektórymi skutkami ubocznymi, takimi jak biegunka, skręt jelit i wrzody
– ALA zapobiega martwicy kości wywołanej steroidami. Kortykoidy takie jak prednizon zwiększają ryzyko złamania przez szkodliwe wycieki krwi do kości. U zwierząt ALA pomógł zapobiec martwicy kości(obumieranie kości zwiększa ryzyko złamania) poprzez redukcję stresu oksydacyjnego i/lub poprawę funkcji śródbłonkowych.
– Zmniejsza poziom leptyny która związana jest z zespołem metabolicznym i cukrzycą.
Kwas arachidonowy jak i jego metabolity(np.eikazanoidy) posiada własności nie tylko wywołujące zapalenia ale i zakrzepy oraz naczyniokurczenie. Czynnik transkrypcyjny NF-kappaBeta aktywuje nie tylko cytokiny prozapalne ale i również syntezę tlenku azotu iNOS, cząsteczki adhezyjne czy metyloproteinazy(odpowiedzialne za stany zapalne np. stawów w różnych chorobach). Proces syntezy EPA i DHA (z ALA) kontrolowany jest przez enzymy desaturazy 6 i 5 – różne źródła podają różne wartości wachające się od 10 do max 30%(u kobiet). Naturalnie konwersje tą można zwiększyć poprzez najróżniejsze czynniki takie jak:
– zwiększyć podaż magnezu(polecam cytrynian lub jabłczan magnezu)
– zwiększyć podaż witaminy C, B3, B6 i B7(biotyna)
– zwiększyć spożycie wapnia i cynku
– zwiększyć podaż białka/aminokwasów
– insulina odgrywa również ważną rolę w konwersji ALA do DHA/EPA
– zredukować do zera spożycie tłuszczów omega 6(wg.badań kwas linolowy obniża konwersje ALA do EPA/DHA o 40%)
– zredukować do zera spożycie tłuszczy nasyconych które to powodują blokadę desaturazy
– zredukować do minimum spożycie alkoholu i cukru przetworzonego
– zredukować do minimum picie kawy i rzucić palenie
Najważniejsze – Kolendra – w badaniach wykazano iż zwiększa ona konwersję ALA do EPA/DHA. Jest to dla mnie kombinacja nie do przebicia – fantastyczne działanie neuroprotekcyjne,kardioprotekcyjne, przeciwzapalne, zmniejszające stres oksydacyjny i zwiększające produkcję glutationu(ALA) wraz z kolendrą która jest chelatorem metali ciężkich (także wspólnie z glutationem wymiotą pokłady aluminium,rtęci,arsenu czy też kadmu przenikając bariere krew mózg jak i z reszty części ciała). Obydwa produkty mają działanie kontrolujące poziom cukru we krwi jak i zwiększające ilość samej insuliny. Inne badania udowadniają że kurkumina zwiększa konwersję ALA do DHA – dzięki tym 2 produktom jestem przekonany że konwersja ALA do EPA/DHA rzędu 30% jest jak najbardziej możliwa.
W organiźmie kwas linolowy generuje wysokie stężenie kwasu arachidonowego, który metabolizowany za pośrednictwem cyklooxygenaz generuje eikozanoidy. Jak już wcześniej wspomniałem jedną z cytokin prozapalnych, która jest wtedy aktywowana to czynnik martwiczy nowotworów(TNF alfa) którego wysoki poziom bezpośrednio uszkadza receptory insulinowe oraz powoduje oporność na insulinę. W seri przemian nieenzymatycznych generowanych przez reaktywne formy tlenu kwas arachidonowy ulega autooksydacji tworząc neurotoksyczne pochodne (4-hydroksynonenal, isprostany, isketale, isofurany) zwiększające stany zapalne i adhezje monocytów do śródbłonka. Kwasy omega 3 – ALA i jego pochodne EPA/DHA hamują w/w procesy. ALA działa silnie neuroprotekcyjnie poprzez działanie antyarytmiczne, obniża poziom cytokiny IL-6 oraz CRP. Obniża takżę ekspresję genów dla cząsteczek adhezyjnych(ICAM-1, VCAM-2 i e-selektyny). VCAM-1 jest odpowiedzialna za adhezje monocytów do śródbłonka i wzmaganie stanu zapalnego co prowadzi do destabilizacji blaszki miażdzycowej. Wreszcze ALA obniża Nf-kappaBeta – aktywowanego przez omege 6 czy też np.infekcje bakteryjne. kwas alfa liponowy posada także działanie przeciwarytmiczne na mięsień serca, poprawia krążenie mózgowe aktywując kanały potasowe TREK-1, zmniejsza stymulacje receptorów glutaminergiczny NMDA, która w stanach niedokrwienia prowadzi do apoptozy komórek nerwowych, zwiększa działanie protekcyjne jonów magnezu na receptory NMDA co pozwala na łągodniejsze przejście udarów mózgu. Należy zaznaczyć iż receptory NMDA są silnie stymulowane podczas chorób neurodegeneracyjnych takich jak hipoglikemia czy padaczka. Kwas ALA silnie pobudza neurogenezę w hipokampie poprzez zwiększenie aktywności genu neurotropowego czynnika mózgowego (BDNF) co sprzyja łągodzeniu depresji. Wszystkie przeprowadzone badania leków przeciwdepresyjnych dowodzą, że ich działanie następuje dopiero po jakimś czasie kiedy to następuje zwiększona aktywność genu BDNF w ośrodkowym układzie nerwowym na który działa własnie ALA. Inna funkcją BDNF jest także działanie antyapoptotyczne(czynnik życia i śmierci komórki = apoptoza = śmierć komórki). ALA pobudza takżę synaptogenezę poprzez zwiększenie genu synaptobrewiny-2 w hipokampie. Z badań wynika iż myszy które pozbawiono tego genu umierają zaraz po porodzie gdyż przekaz między synapsami spada do 10%. Wreszcie ALA powstrzymuje mutacje mitochondrialnego DNA które jest atakowane przez wolne rodniki(mutacje DNA są przyczyną wielu chorób), niedobór ALA powoduje trudności w nauce i koncentracji. ALA w badaniach wykazał również pozytywny wpływ na komórki MCF-7 raka piersi u kobiet (aktywując ich śmierć), wykazuje on takżę funkcję protekcyjną dla wątroby, uwrażliwia komórki na insulinę. Badania doświadczalne kwasu liponowego przedstawiają się obiecująco w przeciwdziałaniu nowotworom krwi (białaczka), płuc, piersi i wątroby. Wstępne badania wskazują, że kwas liponowy wpływa na zatrzymanie cyklu rozrodczego komórek nowotworowych, spowalnia bądź zatrzymuje rozwój guza.
Omega 3 bezpośrednio z ryb jest dla mnie totalnie bezwartościowa ze względu na dodatki rtęci,kadmu, bifenylów polichrowanych czy dioksyn(wszystko rakotwórcze i toksyczne dla układu nerwowego) stąd też wliczając ten jak i powyższe wszystkie pozytywne właściwości oleju lnianego uważam iż jest to podstawa przy wszystkich chorobach autoimmunologicznych,neurodegeneracyjnych (które też przeważnie wynikają z autoimmunologi) i infekcjach bakteryjno/wirusowych. Razem z olejem z ogórecznika i olejem z czarnuszki jest to mój ulubiony olej.
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
ncbi.nlm.nih.gov/pubmed/25550171#
ncbi.nlm.nih.gov/pubmed/23860422
ncbi.nlm.nih.gov/pubmed/19887043
ncbi.nlm.nih.gov/pubmed/24477618
ncbi.nlm.nih.gov/pubmed/1724477
ncbi.nlm.nih.gov/pubmed/14695484
ncbi.nlm.nih.gov/pubmed/19165694
ncbi.nlm.nih.gov/pubmed/23238616
ncbi.nlm.nih.gov/pubmed/15389837
ncbi.nlm.nih.gov/pubmed/15794388
ncbi.nlm.nih.gov/pubmed/11711888
ncbi.nlm.nih.gov/pubmed/23562187
ncbi.nlm.nih.gov/pubmed/10051379
ncbi.nlm.nih.gov/pubmed/25522843
ncbi.nlm.nih.gov/pubmed/15135082
ncbi.nlm.nih.gov/pubmed/12185410
ncbi.nlm.nih.gov/pubmed/14711456
ncbi.nlm.nih.gov/pubmed/12755469
ncbi.nlm.nih.gov/pubmed/18504555
ncbi.nlm.nih.gov/pubmed/12135622
ncbi.nlm.nih.gov/pubmed/10443922
pdrhealth.com/drug_info/nmdrugprofiles/nutsupdrugs/alp_0159.shtml. Accessed July 16, 2007.
lpi.oregonstate.edu/infocenter/othernuts/la/. Accessed July 16, 2007
foodsforlife.org.uk/nutrition/conversion-LNA-DHA-EPA.html
books.google.pl/books?id=eJ10HoYQ2woC&pg=PA96&lpg=PA96&dq=increase+conversion+ala+to+epa&source=bl&ots=1mpRrKPnfr&sig=vNQ3nSytCoxFQTkiD6Ww5HE7r9U&hl=pl&sa=X&ved=0ahUKEwin05GS2YvMAhVMjCwKHURiDLcQ6AEIoQEwEw#v=onepage&q=increase%20conversion%20ala%20to%20epa&f=false
ncbi.nlm.nih.gov/pubmed/23867781
naukawpolsce.pap.pl/aktualnosci/news,407789,apigenina-wzmacnia-polaczenia-nerwowe.html
polowanie-na-zdrowie.blogspot.com/
nutraingrediends-usa.com/Reaserch/omega-3-ALA-intake-enough-for-EPA-DHA-levels-non-fish-eaters
Da Ros R, Assaloni R, Ceriello A. Molecular targets of diabetic vascular complications and potential new drugs. Curr Drug Targets. 2005 Jun;6(4):503-9.
Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 2003 May;26(5):1589-96.
Alpha-lipoic acid. Monograph. Altern Med Rev. 2006 Sept;11(3):232-7.
Pershadsingh HA. Alpha-lipoic acid: physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin Investig Drugs. 2007 Mar;16(3):291-302.
McMackin CJ, Widlansky ME, Hamburg NM, et al. Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens.(Greenwich.). 2007 Apr;9(4):249-55.
Kamenova P. Improvement of insulin sensitivity in patients with type 2 diabetes mellitus after oral administration of alpha-lipoic acid. Hormones (Athens). 2006 Oct-Dec;5(4):251-8.
Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia. 1995 Dec;38(12):1425-33.
Ziegler D, Ametov A, Barinov A, et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006 Nov;29(11):2365-70.
Maitra I, Serbinova E, Trischler H, Packer L. Alpha-lipoic acid prevents buthionine sulfoximine-induced cataract formation in newborn rats. Free Radic Biol Med. 1995 Apr;18(4):823-9.
Filina AA, Davydova NG, Endrikhovskii SN, Shamshinova AM. Lipoic acid as a means of metabolic therapy of open-angle glaucoma. Vestn Oftalmol. 1995 Oct;111(4):6-8.
Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11300-5.
Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med. 1997;22(1-2):359-78.
Panigrahi M, Sadguna Y, Shivakumar BR, et al. alpha-Lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res. 1996 Apr 22;717(1-2):184-8.
Selvakumar E, Hsieh TC. Regulation of cell cycle transition and induction of apoptosis in HL-60 leukemia cells by lipoic acid: role in cancer prevention and therapy. J Hematol Oncol. 2008;1:4.
Na MH, Seo EY, Kim WK. Effects of alpha-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells. Nutr Res Pract. 2009 Winter;3(4):265-71.
Shi DY, Liu HL, Stern JS, Yu PZ, Liu SL. Alpha-lipoic acid induces apoptosis in hepatoma cells via the PTEN/Akt pathway. FEBS Lett. 2008 May 28;582(12):1667-71.
Choi SY, Yu JH, Kim H. Mechanism of alpha-lipoic acid-induced apoptosis of lung cancer cells. Ann N Y Acad Sci. 2009 Aug;1171:149-55.
Dozio E, Ruscica M, Passafaro L, et al. The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells. Eur J Pharmacol. 2010 Sep 1;641(1):29-34.
Lee HS, Na MH, Kim WK. alpha-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells. Nutr Res. 2010 Jun;30(6):403-9.
Holmquist L, Stuchbury G, Berbaum K, et al. Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol Ther. 2007 Jan;113(1):154-64.
Marracci GH, McKeon GP, Marquardt WE, et al. Alpha lipoic acid inhibits human T-cell migration: implications for multiple sclerosis. J Neurosci Res. 2004 Nov 1;78(3):362-70.
Marracci GH, Jones RE, McKeon GP, Bourdette DN. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002 Oct;131(1-2):104-14.
Koh JM, Lee YS, Byun CH, et al. Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells. J Endocrinol. 2005 Jun;185(3):401-13.
Ha H, Lee JH, Kim HN, et al. Alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis. J Immunol. 2006 Jan 1;176(1):111-7.
Koh JM, Lee YS, Byun CH, et al. Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells. J Endocrinol. 2005 Jun;185(3):401-13.
Ha H, Lee JH, Kim HN, et al. Alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis. J Immunol. 2006 Jan 1;176(1):111-7.
Kim HJ, Chang EJ, Kim HM, et al. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med. 2006 May 1;40(9):1483-93.
Muller L, Menzel H. Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium2+ toxicity in isolated hepatocytes. Biochim Biophys Acta. 1990 May 22;1052(3):386-91.
Anuradha B, Varalakshmi P. Protective role of DL-alpha-lipoic acid against mercury-induced neural lipid peroxidation. Pharmacol Res. 1999 Jan;39(1):67-80
Magis D, Ambrosini A, Sandor P, Jacquy J, Laloux P, Schoenen J. A randomized double-blind placebo-controlled trial of thioctic acid in migraine prophylaxis. Headache. 2007 Jan;47(1):52-7.
Beitner H. Randomized, placebo-controlled, double blind study on the clinical efficacy of a cream containing 5% alpha-lipoic acid related to photoageing of facial skin. Br J Dermatol. 2003 Oct;149(4):841-9.
Da Ros R, Assaloni R, Ceriello A. Molecular targets of diabetic vascular complications and potential new drugs. Curr Drug Targets. 2005 Jun;6(4):503-9.
Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 2003 May;26(5):1589-96.
Pershadsingh HA. Alpha-lipoic acid: physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin Investig Drugs. 2007 Mar;16(3):291-302.
Kamenova P. Improvement of insulin sensitivity in patients with type 2 diabetes mellitus after oral administration of alpha-lipoic acid. Hormones (Athens). 2006 Oct-Dec;5(4):251-8.
Gu XM, Zhang SS, Wu JC, et al. Efficacy and safety of high-dose á-lipoic acid in the treatment of diabetic polyneuropathy. Zhonghua Yi Xue Za Zhi. 2010 Sep;90(35):2473-2476.
Heinisch BB, Francesconi M, Mittermayer F, et al. Alpha-lipoic acid improves vascular endothelial function in patients with type 2 diabetes: a placebo-controlled randomized trial. Eur J Clin Invest. 2010 Feb;40(2):148-54.
Dozio E, Ruscica M, Passafaro L, et al. The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells Eur J Pharmacol. 2010 Sep 1;641(1):29-34.
Dörsam B, Göder A, Seiwert N, Kaina B, Fahrer J. Lipoic acid induces p53-independent cell death in colorectal cancer cells and potentiates the cytotoxicity of 5-fluorouracil. Arch Toxicol. 2014 Dec 20.
Simopolous A. P. (2008) The importance of the omega 6/omega 3 ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 233:674-688.
Schapira A. H. (1996) Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr. Opin. Neurol. 9:260-264.
Camandola S., Poli G. and Mattson M. P. (2000). The lipid peroxidation product 4-hydroksy-2,3- nonenal increases AP-1 binding activity thrugh caspase activation in neurons. J. Neurochem.
Toborek M., Malecki A., Garrido R., Mattson M. P., Henning B. and Young B. (1999) Arachidonic acid induced oxidative injury to cultered spinal cord neurons. J. Neurochem. 73:684-692.
Farooqui A. A. and Horrocks L. A. (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267-323.
Farooqui A. A. and Horrocks L.A. (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad and the ugly. Neuroscientist 12:245-260.
Farooqui A. A., Ong W. Y. and Horrocks L. A. (2008) Neurochemical Aspects of Excitotoxicity, pp 1-290. Springer, New York.
Hoshino T., Namba T., Takehara M., Nakaya T., Sugimoto Y., Araki W., Narumiya S, Suzuki T. and Mizushima T. (2009). Prostaglandin E2 stimulates the production of amyloid -beta peptides through internalisation of the EP4 receptor. J. Biol. Chem. 284:18493-18502.
Obajimi O., Black K. D., MacDonald D.J., Boyle R.M., Glen I., Ross B.M. (2005) Differential effect of eicosapentaenoic acid and docosahexaenoic acid upon oxidant -stimulated release and uptake of arachidonic acid in human lymphoma U937 cells. Pharmacol. Res.52:183-191.
Farooqui A. A. and Horrocks L.A. (2007) Glycerophospholipids in the brain: Phospholipases A2 in neurological disorders, pp 1-394. Springer, New York.
Colquhoun A. (2009). Mechanisms of action of eicosapentaenoic acid in bladder cancer cells in vitro: alternation in mitochondrial metabolism , reactive oxygen species generation and apoptosis induction. J. Urol. 181:1885-1893.
Arita M., Oh S. F., Chonan T., Hong S., Elangovan S., Sun Y.P., Uddin J., Petasis N. A. and Sherhan C. N. (2006). Metabolic inactivation of resolvin E1 and stabilisation of its antiinflammantory actions. J. Biol. Chem. 281:22847-22854.
Arita M., Ohira T., Sun Y.P., Elangovan S., Chiang N., and Serhan C.N. (2007). Resolvin E1 selectively interacts with leucotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178:3912-3917.
Marchaselli V.L., Hong S., Lukiw W.J., Tian X.H., Gronert K., Musto A., Hardy M., Gimenez J.M., Chiang N., Serhan C.N., and Bazan N.G. (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leucocyte infiltration and pro-inflammantory gene expression. J. Biol. Chem. 278:43807-43817.
Hong S., Gornet K., Devchand P.R., Moussignac R.L., and Serhan C.N. (2003) Novel docosatriens and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278:14677-14687.
Serhan C.N. (2005) Novel omega 3 derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7-21.
Serhan C.N., Yang R., Martinod K., Kasuga K., Pillai P.S., Porter T.F., Oh S.F. And Spite M. (2009) Maresins: novel macrophage mediators with potent antiinflammantory and proresolving actions. J Exp Med 206:15-23.
Pomponi M., Di Gioia A., Bria P and Pomponi M.F. (2008) Fatty aspirin: new perspective in the prevention of dementia of Alzheimer’s type? Curr. Alzheimer Res. 5:422-431.
Lukiw W.J., Cui J.G., Marcheselli V.L., Bodker M.,Botkjaer A., Gotlinger K., Serhan C.N., and Bozan N.G. (2005) A role of docosahexaenoic acid -derived neuroprotectin D1 in neurall cell survival and Alzheimer disease. J. Clin. Invest. 115:2774-2783.
Bazan N.G. (2009a) Cellular and molecular events mediated by docosahexaenoic acid -derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot. Essent. Fatty Acids 81:205-211.
Bazan N.G. (2009b) Neuroprotectin D1 mediated anti-inflamamntory and survival signaling in stroke, retinal degeneration and Alzheimer’s disease. J. Lipid Res. 50 Suppl. S400-S405.
Bazan N. G. (2005a) Neuroprotectin D1 (NPD1): a DHA derived mediator that protects brain and retina against cell injury – induced oxidative stress. Brain Pathol. 15:159-166.
Bazan N. G. (2005b). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219-230.
Ma O.L., Teder B., Ubeda O.J., Morihara T., Dhoot D., Nyby M.D., Tick M., Frautschy S.A., and Cole G.M. (2007a). Omega 3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer’s disease (AD): relevance to AD prevention. J. Neurosci. 27:14299-14307.
McCarthy M.F. (2003) IGF-1 activity may be a key determinant of stroke risk- a cautionary lesson for vegans. Med. Hypotheses. 61:323-334.
Hoyer S. (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer’s disease. Eur Jur Pharmacol 490(1-3): 115-125.
Rivera E.J., Goldin A., Fulmer N., Tavares R., Wands J.R., and de la Monte S.M. (2005) Insulin and insulin like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetyl-choline. J Alzhimer’s dis 8(3):247-268.
Steen E., Terry B.M., Rivera E.J., Cannnon J.L., Neely T.R., Tavares R., Xu X.J., Wands J.R., and de la Monte S.M. (2005) Impaired insulin and insulin like – growth factor expression and signaling mechanisms in Alzheimer’s disease – is this type 3 diabetes? J Alzheimer’s Dis 2005:7(1):63-80.
Tong M., Dong M., and de la Monte S.M. (2009). Insulin like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with Lewy bodies: pontential role of manganese neurotoxicity J Alheimer’s Dis 16(3): 585-599.
Bousquet M., Saint-Pierre M., Julien C., Salem N. Jr, Cicchetti F., and Calon F. (2008). Beneficial effects of dietary omega 3 polyunsaturated fatty acid on toxin induced neuronal degradation in an anilmal model of Parkinson’s disease. FASEB J. 22:1213-1225.
Samadi P., Gregoire L., Rouillard C., Bedard P.J., Di Paolo T., and Levesque D. (2006). Docosahexaenoic acid reduces levodopa – induced dyskinesias in 1- methyl-4- phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann. Neurol. 59:282-288.
Julien C., Berthiaume L., Hadi-Tahar A., Rajput A.H., Bedard P.J., Di Paolot T., Julian P., and Calon F. (2006). Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem. Int. 48:404-414.
Farooqui A.A., Rapoport S.I. And Harrock L.A. (1997). Membrane phospholipid alternations in Alzheimer’s disease: deficiency of ethanoloamine plasmalogens. Neurochem. Res. 22:523-527.
„Hot Topics in Neural Membrane Lipidology” Akhlaq A. Farooqui.
„Phytochemicals, Signal Transduction, and Neurological Disoreders” Akhlaq A. Farooqui.
„Beneficial Effect of Fish Oil on Human Brain” Akhlaq A. Farooqui.
„Lipid Mediators and Their Metabolism in the Brain” Ahhlaq A. Farooqui.
“Metabolic syndrome” Aklaq A. Farooqui.
“Metabolic syndrome and neurological disorders” Akhlaq Farooqui.
Cunnane SC. In: Flaxseed in Human Nutrition, 2nd ed. Thompson
LU, Cunnane SC, eds. Champaign, IL: AOCS Press, 2003,pp. 63-91.
„Hot Topics in Neural Membrane Lipidology” Akhlaq A. Farooqui
„Phytochemicals, Signal Transduction, and Neurological Disoreders” Akhlaq A. Farooqui
„Beneficial Effect of Fish Oil on Human Brain” Akhlaq A. Farooqui
„Lipid Mediators and Their Metabolism in the Brain” Ahhlaq A. Farooqui
„Molecular Basis of Health and Disease” Undurti N. Das
„Fats that Heal. Fats that Kill” Udo Erasmus
Lopez A,Mathers C,Ezzati M, Jamison D, Murray C (2006) Global and regional burden of disease and risk factors,2001 systemic analysis of population health data. Lancet367:1714-1717.
Ezzati M ,Vander Hoom S Lawes C et al (2005) Rethinking the “Disease of Affluence” paradigm : global patterns of nutritional risks in relation to economic development .PLoS Med 2:e133
Lim SS, Gaziana TA , Gakidou E, Reddy KS, Farzadfar F, Lozana R, Rodgers A (2007) Prevention of cardiovascular disease in high-risk individuals in low-income and middle income countries: health effects and costs. Lancet 370:2054-2625
Luc G,Bard J-M,Juhan-Vague I et al (2003) C-reactive proteine, interleukin-6-fibrinogen as predictors of coronary heart disease. The PRIME study. Arterioscler Thromb Vasc Biol 23 : 1255/1261
Das UN (2001) Is obesity an inflammatory condition ? Nutrution 17:953-966
Das UN (2007) Is depression a low-grade systemic inflammatory condition ? Am J Clin Nutr 85:1665-1666v
Dougan M, Dranoff G (2008) Inciting inflammation: RAGE about tumor promotion. J Exp Med 205:267-270
Akhlaq A. Farooqui (2009) Hot topics in neural membrane lipidology
Gerster H (1998) Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int Nutr Res 68:159-173
Talahalli RR, Vallicannan B, Sambaiah K, Lokesh BR (2010) Lower efficacy in the utilization of dietary ALA as compared to preformed EPA+DHA on long chain n-3 PUFA levels in rats. Lipids 45:799-808
Das UN (2006) Essential fatty acids: biochemistry physiology pathology. Biotechnol J 1:420-439
Das UN (2006) essential fatty acids- a review. Curr Pharm Biotechnol 7:467-482
Das UN (2006) Biological significance of essential fatty acids. J Assoc Physicians India 54:309-319
Peluffo RO, Dumm NTD, De Alaniz MJT, Brennerr RR (1971) Effect of protein and insulin on linoleic acid desaturation of normal and diabetic rats . J Nutr 101:1075-1084
Cupp D, Kampf JA, Kleinfield AM (2004) Linolenic acid transport in hamster intestinal cells is carrier-mediated. Biochemistry 43:4473-4481
Akhlaq A. Farooqui (2009) Hot topics in neural membrane lipidology
Akhlaq A. Farooqui (2011) Lipid mediators and their metabolism in the brain
Farooqui A.A Horrocks L.A., Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577-599
Farooqui A.A., Ong W.Y. , Horrocks L.A (2002) Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med.
Chem.-Anti-inflammatory and Anti-allergy agents 1:193-204
Toborek M. ,Malecki A .,Garido A., Mattson M.P.,Henning B.,Young B. (1999) Arahidonic acid-induced oxidative injury to cultured spinal cord neurons.J . Neurochem 73:684-692
Farooqui A.A Rosenberger T.A.,Horrocks L.A.(1997c). Arahidonic acid-neurotrauma and neurodegenerative disease. In:Yehuda S.,Mostofsky D.I.(eds.) Handbook of essential fatty acids biology. Humana Press,Totowa,NJ,pp 277-295
Akhlaq A. Farooqui (2009) Hot topics in neural membrane lipidology ,Springer pp 10-11
Farooqui A.A. Yang,H.-C,Rosenberger,T.,and Horrocks L.A, (1997). Phsopholipase A2 and its role in brain tissue. J. Neurochem. 69 : 889-901
Farooqui A.A., Horrocks L.A.,and Farooqui T. (2000a) Glycerophospholipids in the brain: their metabolism, incorporation into membranes,functions, and involvement in neurological disorders. Chem. Phys. Lipids 106: 1-29
Farooqui A.A., Ong W.Y., and Horrocks L.A., (2004b). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29: 1961-1977
McLennan P.L., Dallimore J.A. (1995) Dietary canola oil modifies myocardial fatty acids and inhibits cardiac arrhythmias in rats. J. Nutr.125: 1003-1009
Rallidis L.S, Paschos G, Liakos J.K, Velissaridou A.H, Anastasiadis G, Zampelas A (2003) Dietary alpha-linolenic acid decreases C-reactive protein,serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis 167: 237-242
Thies F., Miles E.A., Nebe-von-Caron G, Powell J.R., Hurst T.L., Newsholme E.A., Calder P.C. (2001) Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acid on blood inflammatory cell population and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 36:1183-1193
Ander BP, Weber AR, Rampersad PP, Gilchrist JS, Pierce GN, Lukas A. (2004) Dietary flaxseed protects against ventricular fibrillation induced by ischemia-reperfusion in normal and hypercholesterolemic rabbits. J. Nutr. 134: 3250-3256
Blondeau N, Petrault O, Manta S., Giordanengo V., Gounon P., Bordet R., Lazdunski M., Heurteaux C. (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium chanels. Circ. Res. 101: 176-184
Nguemeni C,Delplangue B , Rovere C , Simon Rousseau N, Gandin C , Agnani G, Nahon JL, Heurteaux ,Blondeau N (2010) Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke . Pharmacol. Res. 61:226-233
Neuroplasticity. A new approach to the pathophysiology of depression J.P.Olie, J.A. Costa E Silva, J.P. Macher . Viamedica (2004)
Blondeau N ,Nguemeni C ,Debruyne DN, Piense M, Wu X ,Pan H,Gandin C ,Lipsky RH,Plumier JC ,Marini AM, Heurteaux C (2009) Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts antidepressant effect :a versatile potential therapy for stroke. Neuropsychopharmacology 34:2548-2559
Schoch S, Deák F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, Kavalali ET. (November 2001). „SNARE function analyzed in synaptobrevin/VAMP knockout mice”. Science 294 (5544): 1117–22.
Guizy M, David M, Arias C, Zhang L, Cofan M, Ruiz-Gutierrez V, Ros E, Lillo MP, Martens JR, Valenzuela C (2008) Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acids, alpha-linolenic acid. J. Mol. Cell. Cardiol. 44: 323-335
De Urquiza AM, Liu S, Sjoberg M., Zetterstorm RH, Griffiths W., Sjovall J, Perlmann T (2000) Docosahexaenoic acid a ligand for the retinoid X receptor in mouse brain. Science 290: 2140-2144
Eckert GP, Franke C, Noldner M, Rau O, Wurglics M, Schubert-Zsilavecz M, Muller WE (2010) Plant derived omega 3 fatty acids protect mitochondrial function in the brain. Pharmacol. Res. 61:234-241
Kodas E, Vancassel S, Lejeune B, Guilloteau D, Chalon S (2002) Reversibility of n-3 fatty acid deficiency -induced changes in dopaminergic neurotransmission in rats: critical role of developmental stage. J. Lipid. Res. 43: 1209-1219
Zimmer L, Delion-Vancassel S, Durand G, Guilloteau D, Bodar S, Besnard JS, Chalon S (2000) Modification of dopamine transmission in nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid. Res. 41: 32-40
Bazan N.G.(2005a) Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32: 89-103
Bazan N.G. (2005b) Neuroprotectin D1 (NPD1): A DHA- derived mediator that protects brain and retina against cell injury- oxidative stress. Brain Pathol. 15:159-166
Udo Erasmus „Fat that heal. Fat that kill” 1993 by Alive Books
Kumar S, Budhwar R, Nigam A, Priya S. Cytoprotection against Cr(6+)-induced DNA damage by alpha-lipoic acid: implications in reducing occupational cancer risk. Mutagenesis. 2009 Nov;24(6):495-500.
Lee HS, Na MH, Kim WK. alpha-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells. Nutr Res. 2010 Jun;30(6):403-9.
Dadhania VP, Tripathi DN, Vikram A, Ramarao P, Jena GB. Intervention of alpha-lipoic acid ameliorates methotrexate-induced oxidative stress and genotoxicity: A study in rat intestine. Chem Biol Interact. 2010 Jan 5;183(1):85-97.
Gourlay M, Franceschini N, Sheyn Y. Prevention and treatment strategies for glucocorticoid-induced osteoporotic fractures. Clin Rheumatol. 2007 Feb;26(2):144-5
Lu BB, Li KH. Lipoic acid prevents steroid-induced osteonecrosis in rabbits. Rheumatol Int. 2011 Mar 23
Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Martínez JA, Moreno-Aliaga MJ. Lipoic acid inhibits leptin secretion and Sp1 activity in adipocytes. Mol Nutr Food Res. 2011 Feb 23.