Rak szyjki macicy stanowi zaledwie 4% umieralności wśród kobiet (na nowotwory). Jednak jak już go masz to ryzyko śmierci wynosi nieco ponad 50% w ciągu 5 lat. Naturalnie do takiego dobrego jak na leczenie czy tez pseudo leczenie(wycinanie) wyniku przyczyniają się po prostu operacje inwazyjne polegające na wycięciu macicy i to jeszcze często razem z węzłami chłonnymi. Tak jak w przypadku raka piersi – Pyrrusowe zwycięstwo gdyż kobieta taka będzie musiała regulować swoją gospodarkę hormonalną podawaniem hormonów syntetycznych z zewnątrz. Jest sporo badań pokazujących mechanizmy działania organizmu tj. co się dzieje w przebiegu tej choroby w organizmie człowieka. Są też badania pokazujące preparaty pochodzenia naturalnego które mogą okazać się skuteczne lub ze względu na swoje właściwości, wpływając na procesy powstające w charakteryzowanej chorobie – będą skuteczne – w końcu na ich podstawie sporządzane są leki antynowotworowe. Problem z lekami nowotworowymi(syntetykami) jest jednak taki, że podawane są często w pojedynkę oddziałując tylko na 1 proces/ścieżkę sygnałową i przeważnie mają ogrom skutków ubocznych. Przejdźmy jednak do konkretów.
Standardowo jak przy każdym raku należy zahamować ścieżkę mTOR a zwiększyć autofagię(czyli proces usuwania śmieci z organizmu) – ścieżka mTOR pomaga np.w osiągnięciu lepszych wyników sportowych jednak nie tylko skraca życie ale i przyczynia się do nowotworów – i w tej chorobie nowotworowej jej zahamowanie(mTOR) i pobudzenie autofagii jest bardzo korzystne. Pobudzenie białka Bax a obniżenie aktywności Bcl-2 praktycznie w każdym typie nowotworu także jest pożądane – Bax odpowiada za śmierć komórkowa która jest tutaj niezbędna aby komórki raka umierały, z kolei białko Bcl-2 odpowiada za przetrwanie komórki stąd potrzeba obniżenia jego aktywności. Metaloproteinzy i kaspazy – kaspaza 3 tak jak białko Bax odpowiedzialna jest za śmierć komórkowa – należy pobudzić, natomiat metaloproteinzy zwiększają stany zapalne – w tym przypadku powinno się je obniżać. Stan niedotlenienia czyli czynnik HIF-1 oraz czynnik VEGF – obydwa na siebie wpływają tzn. kiedy HIF-1 alfa jest pobudzone to VEGF się zwiększa – ten pierwszy powoduje stan niedotlenienia który trzeba koniecznie odwrócić, VEGF z kolei powoduje zwiększone możliwości dopływu substancji odżywczych do tkanki nowotworowej – konieczne jest zahamowanie tego procesu. Dieta z niskim indeksem glikemicznym(IG) oraz mocne obcięcie podaży kalorii to jak dla mnie mus w tym przypadku.To co powyżej wymieniłem to moim zdaniem konieczne procesy i ścieżki sygnałowe do zahamowania lub pobudzenia aby skutecznie walczyć z choroba nowotworowa jaką jest rak szyjki macicy. Więcej informacji trochę bardziej(lub niekiedy trochę mniej) technicznych poniżej.
Część suplementów i ziół z badań i doniesień zawartych w tym artykule można znaleźć tutaj (podstrona z suplementami i ziołami które sam wyselekcjonowałem)
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Literatura
⇧1 | ncbi.nlm.nih.gov/pubmed/21426771 |
---|---|
⇧2 | ncbi.nlm.nih.gov/pubmed/19624895 |
⇧3 | ncbi.nlm.nih.gov/pubmed/19996286 |
⇧4 | ncbi.nlm.nih.gov/pubmed/11853003 |
⇧5 | ncbi.nlm.nih.gov/pubmed/27886335 |
⇧6 | ncbi.nlm.nih.gov/pubmed/26464616 |
⇧7 | ncbi.nlm.nih.gov/pubmed/14555539 |
⇧8 | ncbi.nlm.nih.gov/pmc/articles/PMC2220031/ |
⇧9 | ncbi.nlm.nih.gov/pubmed/15698426 |
⇧10 | ncbi.nlm.nih.gov/pmc/articles/PMC4212005/ |
⇧11 | ncbi.nlm.nih.gov/pubmed/17439952 |
⇧12 | ncbi.nlm.nih.gov/pmc/articles/PMC4212005/table/tbl0005/ |
⇧13 | ncbi.nlm.nih.gov/pubmed/9754764 |
⇧14 | ncbi.nlm.nih.gov/pubmed/25084511 |
⇧15 | ncbi.nlm.nih.gov/pubmed/25386925 |
⇧16, ⇧26 | ncbi.nlm.nih.gov/pubmed/24668416 |
⇧17 | ncbi.nlm.nih.gov/pubmed/25135429 |
⇧18 | ncbi.nlm.nih.gov/pubmed/17074332 |
⇧19 | ncbi.nlm.nih.gov/pubmed/19996286 |
⇧20 | ncbi.nlm.nih.gov/pubmed/21646470 |
⇧21 | ncbi.nlm.nih.gov/pubmed/11344239 |
⇧22 | ncbi.nlm.nih.gov/pubmed/18241547 |
⇧23 | ncbi.nlm.nih.gov/pubmed/26675396 |
⇧24 | ncbi.nlm.nih.gov/pubmed/14701854 |
⇧25 | ncbi.nlm.nih.gov/pubmed/15827339 |
⇧27 | ncbi.nlm.nih.gov/pubmed/23708780 |
⇧28 | ncbi.nlm.nih.gov/pubmed/12795334 |
⇧29 | ncbi.nlm.nih.gov/pubmed/25265013 |
⇧30 | ncbi.nlm.nih.gov/pubmed/11278357 |
⇧31 | ncbi.nlm.nih.gov/pubmed/19080502 |
⇧32 | ncbi.nlm.nih.gov/pubmed/23231348 |
⇧33 | ncbi.nlm.nih.gov/pubmed/25818795 |
⇧34 | ncbi.nlm.nih.gov/pubmed/20686382 |
⇧35 | ncbi.nlm.nih.gov/pubmed/25623525 |
⇧36 | ncbi.nlm.nih.gov/pubmed/26607076 |
⇧37 | ncbi.nlm.nih.gov/pubmed/21964635 |
⇧38 | ncbi.nlm.nih.gov/pubmed/17177841 |
⇧39 | ncbi.nlm.nih.gov/pubmed/16731755 |
⇧40 | ncbi.nlm.nih.gov/pubmed/17983496 |
⇧41 | ncbi.nlm.nih.gov/pubmed/12804120 |
⇧42 | ncbi.nlm.nih.gov/pubmed/26260273 |
⇧43 | ncbi.nlm.nih.gov/pubmed/19953944 |
⇧44 | ncbi.nlm.nih.gov/pubmed/21609578 |
⇧45 | ncbi.nlm.nih.gov/pubmed/25854386 |
⇧46 | ncbi.nlm.nih.gov/pubmed/3711333 |
⇧47 | ncbi.nlm.nih.gov/pubmed/23922174 |
⇧48 | ncbi.nlm.nih.gov/pubmed/24615103 |
⇧49 | ncbi.nlm.nih.gov/pubmed/11712783 |
⇧50 | ncbi.nlm.nih.gov/pubmed/17199997 |
⇧51 | ncbi.nlm.nih.gov/pubmed/17603274 |
⇧52 | ncbi.nlm.nih.gov/pubmed/19317259 |
⇧53 | ncbi.nlm.nih.gov/pubmed/20858478 |
⇧54 | ncbi.nlm.nih.gov/pubmed/23510470 |
⇧55 | ncbi.nlm.nih.gov/pubmed/18687388 |
⇧56 | ncbi.nlm.nih.gov/pubmed/21496227 |
⇧57 | ncbi.nlm.nih.gov/pubmed/1863338 |
⇧58 | ncbi.nlm.nih.gov/pubmed/23122182 |
⇧59 | ncbi.nlm.nih.gov/pubmed/22170400 |
⇧60 | ncbi.nlm.nih.gov/pubmed/19723095 |
⇧61 | ncbi.nlm.nih.gov/pubmed/18761069 |
⇧62 | ncbi.nlm.nih.gov/pubmed/25187959 |
⇧63 | ncbi.nlm.nih.gov/pubmed/23864892 |
⇧64 | ncbi.nlm.nih.gov/pubmed/26813281 |
⇧65 | ncbi.nlm.nih.gov/pubmed/22863844 |
⇧66 | ncbi.nlm.nih.gov/pubmed/21496227 |
⇧67 | ncbi.nlm.nih.gov/pubmed/23268709 |
⇧68 | ncbi.nlm.nih.gov/pubmed/20397191 |
⇧69 | ncbi.nlm.nih.gov/pubmed/23936001 |
⇧70 | ncbi.nlm.nih.gov/pubmed/17044934 |
⇧71 | ncbi.nlm.nih.gov/pubmed/8076361 |
⇧72 | ncbi.nlm.nih.gov/pubmed/18035403 |
⇧73 | ncbi.nlm.nih.gov/pubmed/21939359 |
⇧74 | ncbi.nlm.nih.gov/pubmed/20150221 |
⇧75 | ncbi.nlm.nih.gov/pubmed/23964446 |
Rak nowotwór piersi cz.2 – mechanizmy eliminowania a raczej produkty, które pobudzając pewne mechanizmy przyczyniają się do zahamowania i zwalczenia tkanki i komórek nowotworu piersi. W pierwszej części wypunktowałem hormony, neuroprzekaźniki, białka, receptory czy też geny które mają wpływ na ten typ nowotworu. Dzisiaj jednak przegląd ogromnej ilości rzeczy które działa na najpopularniejszego raka wśród kobiet. Osobiście użyłbym conajmniej kilku rzeczy, które działają na różne aspekty eliminacji i zahamowania przerzutów tego typu raka.
Aspiryna pobudza gen p21CIP1 oraz białko odpowiedzialne za śmierć komórkową – Bax. Ma to wpływ na śmierć komórek raka piersi. Niestety aspiryna jak wiadomo przy dłuższym zażywaniu nawet mini dawek powoduje mocne podrażnienia śluzówki żołądka i jelit doprowadzając do krwawień 13)ncbi.nlm.nih.gov/pubmed/19212664
Inne informacje związane z rakiem piersi
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Literatura
⇧1 | ncbi.nlm.nih.gov/pubmed/26156544 |
---|---|
⇧2 | ncbi.nlm.nih.gov/pubmed/18059161 |
⇧3 | ncbi.nlm.nih.gov/pubmed/22322382 |
⇧4, ⇧12 | ncbi.nlm.nih.gov/pubmed/19462899 |
⇧5 | ncbi.nlm.nih.gov/pubmed/20971068 |
⇧6 | ncbi.nlm.nih.gov/pmc/articles/PMC3839302/ |
⇧7 | ncbi.nlm.nih.gov/pubmed/25413005 |
⇧8 | ncbi.nlm.nih.gov/pubmed/26452606 |
⇧9 | ncbi.nlm.nih.gov/pubmed/17339367 |
⇧10 | ncbi.nlm.nih.gov/pubmed/27377973 |
⇧11 | ncbi.nlm.nih.gov/pubmed/22152773 |
⇧13 | ncbi.nlm.nih.gov/pubmed/19212664 |
⇧14 | ncbi.nlm.nih.gov/pubmed/24954090 |
⇧15 | ncbi.nlm.nih.gov/pubmed/27830358 |
⇧16 | ncbi.nlm.nih.gov/pubmed/25647442 |
⇧17 | ncbi.nlm.nih.gov/pubmed/23448448 |
⇧18 | ncbi.nlm.nih.gov/pubmed/17555831 |
⇧19 | ncbi.nlm.nih.gov/pubmed/25647396 |
⇧20 | ncbi.nlm.nih.gov/pubmed/26674531 |
⇧21 | ncbi.nlm.nih.gov/pubmed/24613843 |
⇧22 | ncbi.nlm.nih.gov/pmc/articles/PMC4634597/ |
⇧23 | ncbi.nlm.nih.gov/pubmed/26464672 |
⇧24 | ncbi.nlm.nih.gov/pubmed/26349913 |
⇧25 | ncbi.nlm.nih.gov/pubmed/27136519 |
⇧26 | phmd.pl/fulltxthtml.php?ICID=1009653 |
⇧27 | ncbi.nlm.nih.gov/pubmed/15111768 |
⇧28 | ncbi.nlm.nih.gov/pubmed/27036297 |
⇧29 | ncbi.nlm.nih.gov/pubmed/27899257 |
⇧30 | ncbi.nlm.nih.gov/pubmed/26985659 |
⇧31 | ncbi.nlm.nih.gov/pubmed/21880954 |
⇧32 | ncbi.nlm.nih.gov/pubmed/17909003 |
⇧33 | ncbi.nlm.nih.gov/pubmed/16519995 |
⇧34 | ncbi.nlm.nih.gov/pubmed/17786300 |
⇧35 | ncbi.nlm.nih.gov/pubmed/17125943 |
⇧36 | ncbi.nlm.nih.gov/pubmed/26101063 |
⇧37 | ncbi.nlm.nih.gov/pubmed/25789847 |
⇧38 | ncbi.nlm.nih.gov/pubmed/20580866 |
⇧39 | ncbi.nlm.nih.gov/pubmed/23065001 |
⇧40 | ncbi.nlm.nih.gov/pubmed/20051378 |
⇧41 | ncbi.nlm.nih.gov/pubmed/25691730 |
⇧42 | ncbi.nlm.nih.gov/pubmed/11673117 |
⇧43 | ncbi.nlm.nih.gov/pubmed/15615418 |
⇧44 | ncbi.nlm.nih.gov/pubmed/23093841 |
⇧45 | ncbi.nlm.nih.gov/pubmed/16740737 |
⇧46 | ncbi.nlm.nih.gov/pubmed/26320684 |
⇧47 | ncbi.nlm.nih.gov/pubmed/27087896 |
⇧48 | ncbi.nlm.nih.gov/pubmed/25818779 |
⇧49, ⇧102 | ncbi.nlm.nih.gov/pubmed/21725607 |
⇧50 | ncbi.nlm.nih.gov/pubmed/28105248 |
⇧51 | ncbi.nlm.nih.gov/pubmed/26542239 |
⇧52 | ncbi.nlm.nih.gov/pubmed/26434836 |
⇧53 | ncbi.nlm.nih.gov/pubmed/23294620 |
⇧54 | ncbi.nlm.nih.gov/pubmed/7853141 |
⇧55 | ncbi.nlm.nih.gov/pubmed/12071468 |
⇧56 | ncbi.nlm.nih.gov/pubmed/16217131 |
⇧57 | ncbi.nlm.nih.gov/pubmed/8519656 |
⇧58 | ncbi.nlm.nih.gov/pubmed/17970073 |
⇧59 | ncbi.nlm.nih.gov/pubmed/20339584 |
⇧60 | ncbi.nlm.nih.gov/pubmed/12324239 |
⇧61 | ncbi.nlm.nih.gov/pubmed/24387703 |
⇧62 | ncbi.nlm.nih.gov/pubmed/17391824 |
⇧63 | ncbi.nlm.nih.gov/pubmed/26559860 |
⇧64 | ncbi.nlm.nih.gov/pubmed/22380770 |
⇧65 | ncbi.nlm.nih.gov/pubmed/18923163 |
⇧66 | ncbi.nlm.nih.gov/pubmed/10644462 |
⇧67 | ncbi.nlm.nih.gov/pubmed/11093765 |
⇧68 | ncbi.nlm.nih.gov/pubmed/24808916 |
⇧69 | ncbi.nlm.nih.gov/pubmed/15518167 |
⇧70 | ncbi.nlm.nih.gov/pubmed/15158086 |
⇧71 | ncbi.nlm.nih.gov/pubmed/12445672 |
⇧72 | ncbi.nlm.nih.gov/pubmed/11850844 |
⇧73 | ncbi.nlm.nih.gov/pubmed/11547544 |
⇧74 | ncbi.nlm.nih.gov/pubmed/10226574 |
⇧75 | ncbi.nlm.nih.gov/pubmed/16608212 |
⇧76 | ncbi.nlm.nih.gov/pubmed/15974627 |
⇧77 | ncbi.nlm.nih.gov/pubmed/18655183 |
⇧78 | ncbi.nlm.nih.gov/pubmed/12910683 |
⇧79 | ncbi.nlm.nih.gov/pubmed/16012772 |
⇧80 | ncbi.nlm.nih.gov/pubmed/17315488 |
⇧81 | ncbi.nlm.nih.gov/pubmed/27047648 |
⇧82 | ncbi.nlm.nih.gov/pubmed/28213567 |
⇧83 | ncbi.nlm.nih.gov/pubmed/22313625 |
⇧84 | ncbi.nlm.nih.gov/pubmed/26417027 |
⇧85 | ncbi.nlm.nih.gov/pubmed/21073172 |
⇧86 | ncbi.nlm.nih.gov/pubmed/18607509 |
⇧87 | ncbi.nlm.nih.gov/pubmed/21508668 |
⇧88 | ncbi.nlm.nih.gov/pubmed/19176872 |
⇧89 | ncbi.nlm.nih.gov/pubmed/24194785 |
⇧90 | ncbi.nlm.nih.gov/pubmed/14698044 |
⇧91 | ncbi.nlm.nih.gov/pubmed/26740221 |
⇧92 | ncbi.nlm.nih.gov/pubmed/27586822 |
⇧93 | ncbi.nlm.nih.gov/pubmed/23697596 |
⇧94 | ncbi.nlm.nih.gov/pubmed/25854386 |
⇧95 | ncbi.nlm.nih.gov/pubmed/28240006 |
⇧96 | ncbi.nlm.nih.gov/pubmed/28264501 |
⇧97 | ncbi.nlm.nih.gov/pubmed/14499024 |
⇧98 | ncbi.nlm.nih.gov/pubmed/12408995 |
⇧99 | ncbi.nlm.nih.gov/pubmed/28032724 |
⇧100 | ncbi.nlm.nih.gov/pubmed/24894151 |
⇧101 | ncbi.nlm.nih.gov/pmc/articles/PMC3306610/ |
⇧103 | ncbi.nlm.nih.gov/pubmed/22224671 |
⇧104 | ncbi.nlm.nih.gov/pubmed/26722264 |
⇧105 | ncbi.nlm.nih.gov/pubmed/24761844 |
⇧106 | ncbi.nlm.nih.gov/pubmed/22848381 |
⇧107 | ncbi.nlm.nih.gov/pubmed/27073579 |
⇧108 | ncbi.nlm.nih.gov/pubmed/18570244 |
⇧109 | ncbi.nlm.nih.gov/pubmed/16297710 |
⇧110 | ncbi.nlm.nih.gov/pubmed/27641158 |
⇧111 | ncbi.nlm.nih.gov/pubmed/16756079 |
⇧112 | ncbi.nlm.nih.gov/pubmed/25453494 |
⇧113 | ncbi.nlm.nih.gov/pubmed/26359917 |
⇧114 | ncbi.nlm.nih.gov/pubmed/26834632 |
⇧115 | ncbi.nlm.nih.gov/pubmed/10816343 |
⇧116 | ncbi.nlm.nih.gov/pubmed/10090823 |
⇧117 | ncbi.nlm.nih.gov/pubmed/25671063 |
⇧118 | ncbi.nlm.nih.gov/pubmed/17373813 |
⇧119 | ncbi.nlm.nih.gov/pubmed/19514731 |
⇧120 | ncbi.nlm.nih.gov/pubmed/26915319 |
⇧121 | ncbi.nlm.nih.gov/pubmed/27162557 |
⇧122 | ncbi.nlm.nih.gov/pubmed/12703993 |
⇧123 | ncbi.nlm.nih.gov/pubmed/12411207 |
⇧124 | ncbi.nlm.nih.gov/pubmed/12042460 |
⇧125 | ncbi.nlm.nih.gov/pubmed/11753438 |
⇧126 | ncbi.nlm.nih.gov/pubmed/23127215 |
⇧127 | ncbi.nlm.nih.gov/pubmed/27498973 |
⇧128 | ncbi.nlm.nih.gov/pubmed/24751011 |
⇧129 | ncbi.nlm.nih.gov/pubmed/24099118 |
⇧130 | ncbi.nlm.nih.gov/pubmed/27028817 |
⇧131 | ncbi.nlm.nih.gov/pubmed/21273604 |
⇧132 | ncbi.nlm.nih.gov/pubmed/27602105 |
⇧133 | ncbi.nlm.nih.gov/pubmed/27524044 |
⇧134 | ncbi.nlm.nih.gov/pubmed/27425446 |
⇧135 | ncbi.nlm.nih.gov/pubmed/22909149 |
⇧136 | ncbi.nlm.nih.gov/pubmed/26843455 |
⇧137 | ncbi.nlm.nih.gov/pubmed/12197771 |
⇧138 | ncbi.nlm.nih.gov/pubmed/22669534 |
⇧139 | ncbi.nlm.nih.gov/pubmed/11271861 |
⇧140 | ncbi.nlm.nih.gov/pubmed/25709476 |
⇧141 | ncbi.nlm.nih.gov/pubmed/22804248 |
⇧142 | ncbi.nlm.nih.gov/pubmed/21295103 |
⇧143 | ncbi.nlm.nih.gov/pubmed/25543165 |
⇧144 | ncbi.nlm.nih.gov/pubmed/26136875 |
⇧145 | ncbi.nlm.nih.gov/pubmed/17957784 |
⇧146 | ncbi.nlm.nih.gov/pubmed/24856767 |
⇧147 | ncbi.nlm.nih.gov/pubmed/25286005 |
⇧148 | ncbi.nlm.nih.gov/pubmed/28035539 |
⇧149 | ncbi.nlm.nih.gov/pubmed/11748377 |
⇧150 | ncbi.nlm.nih.gov/pubmed/27573547 |
⇧151 | ncbi.nlm.nih.gov/pubmed/25172795 |
⇧152 | ncbi.nlm.nih.gov/pubmed/25435628 |
⇧153 | ncbi.nlm.nih.gov/pubmed/11097223 |
⇧154 | ncbi.nlm.nih.gov/pubmed/26210486 |
⇧155 | ncbi.nlm.nih.gov/pubmed/27951515 |
⇧156 | ncbi.nlm.nih.gov/pubmed/27722367 |
⇧157 | ncbi.nlm.nih.gov/pubmed/15519364 |
⇧158 | ncbi.nlm.nih.gov/pubmed/26246832 |
⇧159 | ncbi.nlm.nih.gov/pubmed/10652584 |
⇧160 | ncbi.nlm.nih.gov/pubmed/24069380 |
⇧161 | ncbi.nlm.nih.gov/pubmed/9824849 |
⇧162 | ncbi.nlm.nih.gov/pubmed/10965999 |
⇧163 | ncbi.nlm.nih.gov/pubmed/21484672 |
⇧164 | ncbi.nlm.nih.gov/pubmed/28259996 |
⇧165 | ncbi.nlm.nih.gov/pubmed/24002113 |
⇧166 | ncbi.nlm.nih.gov/pubmed/24377502 |
⇧167 | ncbi.nlm.nih.gov/pubmed/27419628 |
⇧168 | ncbi.nlm.nih.gov/pubmed/11912125 |
⇧169 | ncbi.nlm.nih.gov/pubmed/25746354 |
⇧170 | ncbi.nlm.nih.gov/pubmed/27196773 |
⇧171 | ncbi.nlm.nih.gov/pubmed/27236898 |
⇧172 | ncbi.nlm.nih.gov/pubmed/15563447 |
⇧173 | ncbi.nlm.nih.gov/pubmed/21170936 |
⇧174 | ncbi.nlm.nih.gov/pubmed/15757513 |
⇧175 | ncbi.nlm.nih.gov/pubmed/17640163 |
⇧176 | ncbi.nlm.nih.gov/pubmed/16418572 |
⇧177 | ncbi.nlm.nih.gov/pubmed/25605148 |
⇧178 | ncbi.nlm.nih.gov/pubmed/26189300 |
⇧179 | ncbi.nlm.nih.gov/pubmed/19969552 |
⇧180 | ncbi.nlm.nih.gov/pubmed/22619689 |
⇧181 | ncbi.nlm.nih.gov/pubmed/20510328 |
⇧182 | ncbi.nlm.nih.gov/pubmed/17475222 |
⇧183 | ncbi.nlm.nih.gov/pubmed/19059205 |
⇧184 | ncbi.nlm.nih.gov/pubmed/19059811 |
⇧185 | ncbi.nlm.nih.gov/pubmed/17059010 |
⇧186 | ncbi.nlm.nih.gov/pubmed/27000121 |
⇧187 | ncbi.nlm.nih.gov/pubmed/25704088 |
⇧188 | ncbi.nlm.nih.gov/pubmed/27323060 |
⇧189 | ncbi.nlm.nih.gov/pubmed/21091766 |
⇧190 | ncbi.nlm.nih.gov/pubmed/22347521 |
⇧191 | ncbi.nlm.nih.gov/pubmed/17236862 |
⇧192 | ncbi.nlm.nih.gov/pubmed/9200147 |
⇧193 | ncbi.nlm.nih.gov/pubmed/21273574 |
⇧194 | ncbi.nlm.nih.gov/pubmed/21920417 |
⇧195 | ncbi.nlm.nih.gov/pubmed/27586473 |
⇧196 | ncbi.nlm.nih.gov/pubmed/20306477 |
⇧197 | ncbi.nlm.nih.gov/pubmed/11962254 |
⇧198 | ncbi.nlm.nih.gov/pubmed/17761019 |
⇧199 | ncbi.nlm.nih.gov/pubmed/8875554 |
⇧200 | ncbi.nlm.nih.gov/pubmed/28259690 |
⇧201 | ncbi.nlm.nih.gov/pubmed/25227736 |
⇧202 | ncbi.nlm.nih.gov/pubmed/25713926 |
⇧203 | ncbi.nlm.nih.gov/pubmed/22389237 |
⇧204 | ncbi.nlm.nih.gov/pubmed/25622256 |
⇧205 | ncbi.nlm.nih.gov/pubmed/20492173 |
⇧206 | ncbi.nlm.nih.gov/pubmed/21420233 |
⇧207 | ncbi.nlm.nih.gov/pubmed/20063697 |
⇧208 | ncbi.nlm.nih.gov/pubmed/20943371 |
⇧209 | ncbi.nlm.nih.gov/pubmed/24364759 |
⇧210 | ncbi.nlm.nih.gov/pubmed/21183018 |
⇧211 | ncbi.nlm.nih.gov/pubmed/28152473 |
⇧212 | ncbi.nlm.nih.gov/pubmed/25223183 |
⇧213 | ncbi.nlm.nih.gov/pubmed/20718753 |
⇧214 | ncbi.nlm.nih.gov/pubmed/20156557 |
⇧215 | ncbi.nlm.nih.gov/pubmed/21191671 |
⇧216 | ncbi.nlm.nih.gov/pubmed/27151203 |
⇧217 | ncbi.nlm.nih.gov/pubmed/16901971 |
⇧218 | ncbi.nlm.nih.gov/pubmed/24793216 |
⇧219 | ncbi.nlm.nih.gov/pubmed/24508987 |
⇧220 | ncbi.nlm.nih.gov/pubmed/19424633 |
⇧221 | ncbi.nlm.nih.gov/pubmed/19754176 |
⇧222 | ncbi.nlm.nih.gov/pubmed/14597870 |
⇧223 | ncbi.nlm.nih.gov/pubmed/21300690 |
⇧224 | ncbi.nlm.nih.gov/pubmed/21776823 |
⇧225 | ncbi.nlm.nih.gov/pubmed/21799661 |
⇧226 | ncbi.nlm.nih.gov/pubmed/22189713 |
Rak piersi (nowotwór piersi) to bardzo skomplikowany typ nowotworu ze względu na mnogość procesów, które występują podczas tej choroby. Skuteczność 'leczenia’ konwencjonalnego tego typu raka jest bardzo wysoka a to z tego względu, że pierś z nieprawidłową tkanką jest po prostu po prostu odcinana. Bardzo mnie dziwi stosowane po takim zabiegu stwierdzenie 'pokonała Pani raka piersi’ ,gdyż jakbym miał raka prącia a po jego wycięciu plus naświetlaniu , lekarz by mi coś takiego powiedział to bym go strzelił chyba w twarz – jak dla mnie wycięcie to co najwyżej Perrusowe 'zwycięstwo’. Stan depresji po utraceniu synonimu męskości (czy też w przypadku kobiet – piersi) jest raczej nie do opisania i bez problemów wywoła poważną depresję – a z tego pojawi się masa innych, ciężkich chorób. Co się dokładnie dzieje w chorobie nowotworowej piersi?jakie czynniki wpływają na ten typ raka i wreszcie co wpływa na zahamowanie przerzutów, rozrostu i wreszcie na całkowite wyleczenie?( z naturalnych substancji oczywiście). Art. podzielony na 2 części.
Z tysięcy badań jakie przerobiłem takie wnioski mi(i nie tylko mi,bo tysięcy naukowcom) się nasuwają(tj.co w większości przypadków się dzieje w organizmie człowieka z rakiem piersi i co powinno zostać zahamowane lub aktywowane):
Wiedz że spędziłem nad tym tematem ogromną ilość roboczogodzin i pomimo tego nie jestem w stanie Ci wyłożyć wszystkich informacji na temat enzymów, białek, genów i szlaków sygnałowych które tutaj wymieniłem stąd też pierwsza cześć jest dość mocno techniczna. Druga – lista ziół i substancji, które działają na raka piersi(z opisem co powodują w tym typie raka) jest zdecydowanie jaśniejsza. Pamiętaj, że większość historii, które słyszałeś na temat wyleczeń raka piersi metodami alternatywnymi jest najprawdopodobniej prawdziwa a przynajmniej ja potrafię je wyjaśnić. Przykład?Na pewno słyszałeś o kobiecie, która piła 5kg soku z marchewki i dzięki temu wyleczyła się z raka piersi – jak to wytłumaczyć?retinoidy mają udowodnione działanie antyrakowe względem raka piersi a picie soku na dodatek bardzo polepsza absorbcję beta karotenu(który przekształca się do witaminy A). Wiedź, że błonnik upośledza absorbcję karoteinoidów z marchewki stąd (nie wiem czy w ogóle o tym ta dziewczyna wiedziała – raczej podejrzewam, że było to przeczucie/podświadomość) też picie tego soku maksymalnie zwiększyło szanse tej dziewczyny na przeżycie. Jeśli jeszcze piła ten sok w niedużych ilościach, ale regularnie/często codziennie to nie pobudzała za mocno insuliny przez co nie dokarmiała niepotrzebnie tkanki rakowej. Inny przykład?Dieta dr.Gersona – niemieckiego lekarza i naukowca przede wszystkim – lecząca każdy typ raka, polega między innymi na podawaniu owsianki na wodzie. Zwykły(czy tam nawet niezwykły) dietetyk powie „Gluten+kwas fitynowy+ zboża = stan zapalny = zdecydowanie unikaj”. Namaczanie redukuje poziomy kwasu fitynowego ale…to między innymi on wykazuje właściwości przeciwnowotworowego. A dlaczego?hamuje telomeraze – coś dzięki czemu możesz żyć wiecznie musi zostać zastopowane w chorobie nowotworowej,gdyż telomeraza występuje w intensywnie dzielących się komórkach tkanki nowotworowej i jest w nich bardzo aktywna. Max Gerson to człowiek wybitny – ponadczasowy geniusz bo takich i innych produktów w jego diecie jest multum. Także najważniejsze jest w jakim stadium życia/zdrowia się znajdujesz, co Ci doskwiera i ewentualnie jak wyglądają u Ciebie mutacje genetyczne – pod te elementy budujesz dietę – jechanie całe życie na jednej niezmienionej diecie zaprowadzi Cię….nie tam gdzie chcesz. 1)pl.wikipedia.org/wiki/Telomeraza
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Literatura
⇧1 | pl.wikipedia.org/wiki/Telomeraza |
---|---|
⇧2 | ncbi.nlm.nih.gov/pubmed/27869171 |
⇧3 | ncbi.nlm.nih.gov/pubmed/18246318 |
⇧4 | ncbi.nlm.nih.gov/pubmed/24196838 |
⇧5 | ncbi.nlm.nih.gov/pmc/articles/PMC4449873/ |
⇧6 | ncbi.nlm.nih.gov/pubmed/27009091 |
⇧7 | ncbi.nlm.nih.gov/pmc/articles/PMC2886087/ |
⇧8 | ncbi.nlm.nih.gov/pubmed/21693041 |
⇧9 | ncbi.nlm.nih.gov/pubmed/26996623 |
⇧10 | ncbi.nlm.nih.gov/pubmed/12594813 |
⇧11 | ncbi.nlm.nih.gov/pubmed/17651059 |
⇧12 | ncbi.nlm.nih.gov/pubmed/27121210 |
⇧13 | ncbi.nlm.nih.gov/pubmed/27989600 |
⇧14 | ncbi.nlm.nih.gov/pubmed/28131840 |
⇧15 | ncbi.nlm.nih.gov/pubmed/26369543 |
⇧16 | ncbi.nlm.nih.gov/pubmed/19347290 |
⇧17 | ncbi.nlm.nih.gov/pubmed/17076197 |
⇧18 | ncbi.nlm.nih.gov/pubmed/15226458 |
⇧19 | ncbi.nlm.nih.gov/pubmed/21283672 |
⇧20 | ncbi.nlm.nih.gov/pubmed/27212167 |
⇧21 | ncbi.nlm.nih.gov/pubmed/19760502 |
⇧22 | ncbi.nlm.nih.gov/pubmed/10604474 |
⇧23 | ncbi.nlm.nih.gov/pubmed/2142277 |
⇧24 | ncbi.nlm.nih.gov/pubmed/12234599 |
⇧25 | ncbi.nlm.nih.gov/pubmed/11331750 |
⇧26 | ncbi.nlm.nih.gov/pubmed/27111245 |
⇧27 | ncbi.nlm.nih.gov/pubmed/28123641 |
⇧28 | ncbi.nlm.nih.gov/pubmed/23667623 |
⇧29 | ncbi.nlm.nih.gov/pubmed/26710692 |
⇧30 | ncbi.nlm.nih.gov/pubmed/24096482 |
⇧31 | ncbi.nlm.nih.gov/pubmed/24045366 |
⇧32 | ncbi.nlm.nih.gov/pubmed/25213553 |
⇧33 | ncbi.nlm.nih.gov/pubmed/23511245 |
⇧34 | ncbi.nlm.nih.gov/pubmed/28052019 |
⇧35 | ncbi.nlm.nih.gov/pubmed/26751847 |
⇧36 | ncbi.nlm.nih.gov/pubmed/20945086 |
⇧37 | ncbi.nlm.nih.gov/pubmed/17822320 |
⇧38 | ncbi.nlm.nih.gov/pubmed/25963903 |
⇧39 | ncbi.nlm.nih.gov/pubmed/23369609 |
⇧40 | ncbi.nlm.nih.gov/pubmed/26778715 |
⇧41 | pbkom.eu/sites/default/files/artykulydo2012/STRUKTURA%20I%20FUNKCJE%20BARIERY%20KREW-MÓZG.pdf |
⇧42 | ncbi.nlm.nih.gov/pubmed/24027432 |
⇧43 | ncbi.nlm.nih.gov/pubmed/23794518 |
⇧44 | ncbi.nlm.nih.gov/pubmed/16033851 |
⇧45 | ncbi.nlm.nih.gov/pubmed/17686306 |
⇧46 | ncbi.nlm.nih.gov/pubmed/25053741 |
⇧47 | ncbi.nlm.nih.gov/pubmed/12810536 |
⇧48 | ncbi.nlm.nih.gov/pubmed/17121229 |
⇧49 | ncbi.nlm.nih.gov/pubmed/9164653 |
⇧50 | ncbi.nlm.nih.gov/pubmed/21187089 |
⇧51 | ncbi.nlm.nih.gov/pubmed/25916999 |
⇧52 | ncbi.nlm.nih.gov/pubmed/21131637 |
⇧53 | ncbi.nlm.nih.gov/pubmed/20571736 |
⇧54 | ncbi.nlm.nih.gov/pubmed/22901140 |
⇧55 | ncbi.nlm.nih.gov/pubmed/26456774 |
⇧56 | ncbi.nlm.nih.gov/pubmed/16307521 |
⇧57 | ncbi.nlm.nih.gov/pubmed/12762645 |
⇧58 | ncbi.nlm.nih.gov/pubmed/27751350 |
⇧59 | ncbi.nlm.nih.gov/pubmed/16168140 |
⇧60 | ncbi.nlm.nih.gov/pubmed/14623178 |
⇧61 | ncbi.nlm.nih.gov/pubmed/27510838 |
⇧62 | ncbi.nlm.nih.gov/pubmed/12138405 |
⇧63 | ncbi.nlm.nih.gov/pubmed/28147314 |
⇧64 | ncbi.nlm.nih.gov/pubmed/15095265 |
⇧65 | ncbi.nlm.nih.gov/pubmed/23662114 |
⇧66 | ncbi.nlm.nih.gov/pubmed/26884946 |
⇧67 | ncbi.nlm.nih.gov/pubmed/14698525 |
⇧68 | ncbi.nlm.nih.gov/pubmed/27731376 |
⇧69 | ncbi.nlm.nih.gov/pubmed/10774572 |
⇧70 | ncbi.nlm.nih.gov/pubmed/11280795 |
⇧71 | ncbi.nlm.nih.gov/pubmed/18245667 |
⇧72 | ncbi.nlm.nih.gov/pubmed/12566306 |
⇧73 | ncbi.nlm.nih.gov/pubmed/9515800 |
⇧74 | ncbi.nlm.nih.gov/pubmed/14715431 |
⇧75 | ncbi.nlm.nih.gov/pubmed/27712588 |
⇧76 | ncbi.nlm.nih.gov/pubmed/17999388 |
⇧77 | ncbi.nlm.nih.gov/pubmed/26378045 |
⇧78 | ncbi.nlm.nih.gov/pmc/articles/PMC1971219/ |
⇧79 | ncbi.nlm.nih.gov/pubmed/12242698 |
⇧80 | ncbi.nlm.nih.gov/pubmed/8865161 |
⇧81 | ncbi.nlm.nih.gov/pubmed/9751635 |
⇧82 | ncbi.nlm.nih.gov/pubmed/26884867 |
⇧83 | ncbi.nlm.nih.gov/pubmed/21604273 |
⇧84 | ncbi.nlm.nih.gov/pubmed/12100737 |
⇧85 | ncbi.nlm.nih.gov/pubmed/12012621 |
⇧86 | ncbi.nlm.nih.gov/pubmed/23077249 |
⇧87 | ncbi.nlm.nih.gov/pubmed/23335521 |
⇧88 | ncbi.nlm.nih.gov/pubmed/27524906 |
⇧89 | ncbi.nlm.nih.gov/pubmed/18210875 |
⇧90 | ncbi.nlm.nih.gov/pubmed/18667769 |
⇧91 | ncbi.nlm.nih.gov/pubmed/16172194 |
⇧92 | ncbi.nlm.nih.gov/pubmed/26706681 |
⇧93 | ncbi.nlm.nih.gov/pubmed/17349798 |
⇧94 | ncbi.nlm.nih.gov/pubmed/23140579 |
⇧95 | ncbi.nlm.nih.gov/pubmed/1728401 |
⇧96 | ncbi.nlm.nih.gov/pubmed/9607543 |
⇧97 | ncbi.nlm.nih.gov/pubmed/9495240 |
⇧98 | ncbi.nlm.nih.gov/pubmed/20957523 |
⇧99 | ncbi.nlm.nih.gov/pubmed/12592380 |
⇧100 | ncbi.nlm.nih.gov/pubmed/23814496 |
⇧101 | ncbi.nlm.nih.gov/pubmed/24938129 |
⇧102 | ncbi.nlm.nih.gov/pubmed/10813718 |
⇧103 | ncbi.nlm.nih.gov/pubmed/16204061 |
⇧104 | ncbi.nlm.nih.gov/pubmed/17201186 |
⇧105 | ncbi.nlm.nih.gov/pubmed/14734471 |
⇧106 | ncbi.nlm.nih.gov/pubmed/19666078 |
⇧107 | ncbi.nlm.nih.gov/pubmed/12408376 |
⇧108 | ncbi.nlm.nih.gov/pubmed/17961621 |
⇧109 | ncbi.nlm.nih.gov/pubmed/19528470 |
⇧110 | ncbi.nlm.nih.gov/pubmed/22393400 |
Wiadomo że opioidy(np.morfina), czy też wysoki poziom cholesterolu LDL sprzyja powstawaniu przerzutów nowotworowych. Odnośnie morfiny jest spore prawdopodobieństwo, że tak się dzieje(są doniesienia pozytywne jak i sprzeczne także osobiście jakbym znalazł się w tak groźnej dla życia sytuacji nawet bym nie rozważał przyjęcia morfiny pomimo potężnego bólu). Jeśli chodzi o cholesterol LDL(to ten zły) ułatwia on przemieszczanie się komórek rakowych po organiźmie – a sam proces przerzutu nowotworu i tworzenia się wtórnych guzów nowotworowych fachowo nazywa się metastazą. Z kolei wysoki poziom HDL pomaga utrzymać komórki nowotworowe w jednym miejscu,a wszystko to dzięki integrynom – cząsteczkom na powierzchni komórek, które pozwalają na agregację i migrację. Ponadto, integryny dzięki cholesterolowi, są zdolne do przemieszczania się z powierzchni komórki rakowej do jej wnętrza. Umożliwiają one komórkom nowotworowym odłączanie się od ogniska chorobowego i rozprzestrzeniają się po organiźmie w celu tworzenia nowych guzów. Wg.prof.Thomasa Grewala zły cholesterol(LDL) kontroluje przepływ w małych naczyniach krwionośnych, w których także występują integryny, a to wywiera wpływ na zdolność komórek rakowych do przemieszczania się i rozprzestrzeniania po ciele. Także HDL jest jednym z czynników który potrafi powstrzymać metastazę komórek rakowych. Wg. niektórych źródeł 90% zgonów na raka jest wynikiem przerzutów (metastazy) do innych organów a nie pierwotnym miejscem gdzie zagnieździł się rak. Jak zatem inaczej można nie dopuścić do migracji komórek rakowych?Na ratunek może przyjść znane zioło używane często w kuchni – Kolendra.
Alkoholowy ekstrakt z Kolendry siewnej(z korzenia) posiada właściwości przeciwnowotworowe oraz antyoksydacyjne. W badaniach kolendra wykazała blokowanie destrukcji DNA w fibroblastach oraz powstrzymała migracje komórek MCF7 (są to komórki rakowe występujące w przypadku raka piersi u kobiet) wywołaną H2O2. Świadczy to o protekcyjnym działaniu kolendry w przypadku rozprzestrzeniania się/przerzutów tego typu nowotworu. Roślina ta wykazała przeciwnowotworowe właściwości względem komórek MCF-7 poprzez wpływ na enzymy antyoksydacyjne prowadzące do akumulacji H2O2, blokadę cyklu komórkowego G2/M oraz apoptozę (śmierć komórki). Wykryto takżę obecność kwasu askorbinowego który znany jest ze swoich właściwości przeciwnowotworowych. Chciałbym również napomknąć o tym, iż kolendra zawiera w sobie apigeninę – b.dobrą substancję powstrzymującą degradację chrząstki stawowej jak i również blokującą rozrost komórek nowotworowych poprzez pozbawienie ich mechanizmu chroniącego przed apoptozą(naturalną śmiercią). Apigenina przyczepia się do białka hnRNPA2 dzięki czemu proces składania genów w komórkach nowotworowych przebiega tak jak w komórkach zdrowych doprowadzając do ich naturalnej śmierci. Apigeninę można kupić skoncentrowaną w postaci suplementu diety(allegro, iherb.com). Inne substancje przydatne w walce z nowotworami:
Sho-saiko-to – japońska roślinka – wykazuje nie tylko właściwości przeciw przerzutowe ale i również powoduje apoptozę komórek raka. Można ją zakupić w postaci suplementu 'SST’ z iherb(i możliwe że z allegro). Odradzam kupowania produktu 'made in japan’ – wiadomo chyba z jakiego powodu(Fukushima).
Tarczyca bajkalska – substancja zwana baikaliną wg.badań blokuje zdolności komórek nowotworowych do przerzutów + doprowadza je do aptoptozy czyli naturalnej śmierci. Bardzo łatwa do zdobycia/kupienia – polecam w miarę możliwości jej hodowle.
Tak samo działanie (powstrzymujące przerzuty jak i uśmiercające komórki nowotworowe) posiada zioło o nazwie Andrographis i andrografolidy w nim zawarte. W laboratorium w testach in vivo jak i in vitro wykazano jego skuteczność w praktycznie każdym typie nowotworu. Dawki jakie rzuciły mi się w oczy w testach to 200mg/kg masy ciała dla jego maksymalnej skuteczności. (Z Andrografisem należy uważać ze względu na jego znany skutek uboczny powodujący utratę smaku, osobiście mnie to nie spotkałem ale znam przypadki osób które musiały kompletnie odstawić to zioło i już do niego nie wróciły gdyż zmiana dawki na minimalna niestety nic nie dała).
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
bmccomplementalternmed.biomedcentral.com/articles/10.1186/1472-6882-13-347
kopalniawiedzy.pl/apigenina-nowotwor-apoptora-komorka-nowotworowa-dieta-srodziemnomorska,18122
ncbi.nlm.nih.gov/pubmed/21267766
ncbi.nlm.nih.gov/pubmed/24759319
roik.pl/rak-rozprzestrzenia-sie-przy-pomocy-zlego-cholesterolu/
roik.pl/udalo-sie-zablokowac-przerzuty-raka-piersi/
roik.pl/medycyna-komorkowa-dr-ratha-dlaczegorak-jest-agresywna-choroba/
ncbi.nlm.nih.gov/pubmed/23387975
sciencedirect.com/science/article/pii/S0022202X15402386
ncbi.nlm.nih.gov/pmc/articles/PMC2880989/
ncbi.nlm.nih.gov/pubmed/9764846
Yano H, et al. The herbal medicine sho-saiko-to inhibits proliferation of cancer cell lines by inducing apoptosis and arrest at the G0/G1 phase. Cancer Res 1994;54:448-54.
Ito H, et al. Effects of a blended Chinese medicine, xiao-chai-hu-tang, on Lewis lung carcinoma growth and inhibition of lung metastasis, with special reference to macrophage activation. Jpn J Pharmacol 1986;41:307-14.
Zbadałaś geny odpowiedzialne za zwiększone prawdopodobieństwo raka piersi i jajników…diagnosta nic nie odpowiedział – skierował tylko do lekarza. Wizyta – skierowanie na mastektomię + czasami chemio/radioterapia (tak dla pewności!-i podkręcenia budżetu danej placówki która pobierze za to wszystko pieniądze z NFZu – wkońcu operacje,przeszczepy i chemioterapia to największa kasa w medycynie). Nie ważne, że mając nawet 100% zwiększone ryzyko (niektóre rzeczy powodują nawet ryzyko zwiększone o 500%) zachorowania na nowotwór nie daje to żadnej 'gwarancji’ że rak się wogóle rozwinie – biznes is biznes. W każdym bądź razie mutacja genów odpowiedzialnych za utworzenie się komórek nowotoworowych(BRCA1 bo o nim mowa) wzrasta od 40 do 80%. Ale nie o tym teraz. Kobiety które usłyszą taka diagnozę popadają w panikę – matka miała to na pewno i ja teraz mam także…strach w sumie jest uzasadniony. To samo tyczy się mężczyzn – naturalnie rak piersi u nich bardzo rzadko kiedy występuje ,ale rak prostaty jak najbardziej – i jest on także związany z mutacją BRCA1 lub BRCA2. Zatem co zrobić, aby mutacja BRCA1 była nam nie groźna?o tym poniżej.
Wadliwe geny mogą być przekazywane przez rodziców jak i także mogą być zmieniane/blokowane w skutek infekcji bakteryjnych czy też w skutek nagromadzenia wolnych rodników(możliwe że i wirusowych – tutaj nie mam niestety pewności a nie przypominam sobie badań na ten temat). Należy także brać pod uwagę fakt iż antykoncepcja hormonalna dodatkowo podwyższa ryzyko nowotworów przy wadliwych genach BRCA 1 i 2 – tak samo jak i hormonalna terapia zastępcza po okresie menopauzy.
Genisteina (4′ 5,7-trihydroxyisoflavone) jest jednym z isoflawonów występującym w soi. Strukturalnie podobna do 17B-estradiolu genisteina jest jednym z fitoestrogenów ,która może obniżyć ryzyko raka piersi(Trock et.al 2006). Geinisteina obniża poliferacje zmutowanych komórek poprzez regulacje p21WAF1/CIP1 oraz AKT w tych komórkach(Privat et.al2010). Genisteina jest także blokerem PTK(proteinowych kinaz tyrozynowych) która może osłabiać wzrost komórek rakowych poprzez zblokowanie szlaku fosoforylacji tyrozyny białka HER2(Kousidou et al.2006). . Enzymy PTK pełnią bardzo ważną role w funkcjonowaniu komórki, uczestnicząc w wytwarzaniu, modulacji i przekazywaniu sygnałów chemicznych, przenoszonych od receptora do jądra komórkowego i wywołujących ekspresję genów. Stwierdzono także nadmierną ekspresję PTK w wielu różnych rodzajach nowotworów, skąd wynika, że specyficzne hamowanie aktywności tych enzymów może mieć ogromne znaczenie terapeutyczne. W badaniach na liniach komórkowych wykazano efekt genisteiny (antyproliferacyjny) zarówno w stosunku do komórek estrogenozależnych, jak i niezależnych, przy czym efekt przeciwnowotworowy osiągany był przez zatrzymanie cyklu komórkowego w stadium G2 – M, indukcji i ekspresji p21 oraz w wyniku apoptozy. W wielu pracach dotyczących przeciwnowotworowej aktywności genisteiny podkreśla się także silne działanie przeciwutleniające izoflawonów, a więc zdolność do usuwania na poziomie komórkowym reaktywnych i toksycznych form tlenu powstających w wyniku biotransformacji.
Jako modulator rodziny białek HER(EGFR,HER2, HER3)kombinacja genisteiny i tamoksifenu(tamoxifen) wykazuje działanie synergiczne w blokowaniu wzrostu komórek rakowych(Mai et al 2007). Przeprowadzono już nawet badanie kliniczne geinisteiny w formie suplementu na pacjentach z rakiem piersi w fazie pierwszej(tj.wczesnej) – wyniki pozytywne(Takimoto et al. 2003).
Wykazano, że genisteina (w dużych stężeniach) wiąże się z receptorami androgenów i obniża, w granicach 50-80%, stymulujący wpływ hormonów męskich (głównie testosteronu i dihydrotestosteronu) na rozwój raka gruczołu krokowego. Ponadto przeciwnowotworowe działanie genisteiny w raku sutka zostało udowodnione w badaniach na zwierzętach i na liniach komórkowych. W eksperymentach na liniach komórkowych wykazano antyproliferacyjny efekt genisteiny w stosunku do komórek z obecnym receptorem estrogenowym ER(+), jak i bez receptora ER(–). Efekt ten został osiągnięty przez zatrzymanie cyklu komórkowego w stadium G2 – M, indukcję i ekspresję p21 oraz w wyniku apoptozy. Genisteina w stężeniach fizjologicznych, w zakresie od 10 nmol/l do 1 μmol/l, stymuluje proliferację komórek normalnych oraz rakowych. Natomiast w stężeniach większych, przekraczających 10 μmol/l, działa hamująco na podziały komórek nowotworowych.
Reaktywne formy tlenu (ROS) pełnią istotną rolę w procesie inicjacji, promocji i progresji nowotworów. Na etapie inicjacji najważniejszą rolę przypisuje się rodnikowi hydroksylowemu OH, który odpowiada za inaktywację genów supresorowych, aktywację onkogenów i aktywację niektórych kancerogenów. Właściwości antyoksydacyjne genisteiny zostały dobrze udokumentowane w literaturze. Wiadomo, że związek ten wykazuje zdolność hamowania peroksydacji lipidów, a także zdolność wymiatania wolnych rodników tlenowych i ich form reaktywnych. Ogranicza również ich powstawanie w komórkach przez hamowanie aktywności enzymów, które biorą udział w powstawaniu reaktywnych form tlenu (takich jak oksydaza ksantynowa, błonowa oksydaza NAD(P)H, mieloperoksydaza). Ponadto genisteina działa poprzez stymulowanie aktywności enzymów antyoksydacyjnych, m.in. dysmutazy ponadtlenkowej(pisałem już o niej we wcześniejszym artykule), peroksydazy glutationowej, katalazy i reduktazy glutationowej oraz zapobiega powstawaniu w komórkach reaktywnego rodnika hydroksylowego przez kompleksowe wiązanie kationów metali przejściowych (miedzi i żelaza).
Angiogeneza jest procesem tworzenia nowych naczyń krwionośnych na bazie już istniejących, występuje fizjologicznie i jest niezbędna do prawidłowego rozwoju, wzrostu i dojrzewania organizmu. Udowodniono, że proces ten leży również u podstaw wielu chorób, w tym chorób nowotworowych. Wykazano, że genisteina jest jednym z najlepszych blokerów angiogenezy wśród związków roślinnych. Fotsis i wsp. stwierdzili, że genisteina hamuje proliferację wielu różnych komórek nowotworowych. Inni autorzy również wykazali antyangiogenne działanie genisteiny. Shao i wsp. oprócz zahamowania przez genisteinę angiogenezy, zaobserwowali także obniżenie wytwarzania czynników regulujących ten proces, takich jak VEGF i TGF β.Wietrzyk i wsp. przeprowadzili badania, które wykazały, że genisteina stosowana pojedynczo (100 mg/kg m.c. przez 10 dni) lub po jednorazowej dawce cyklofosfamidu (CY) spowodowała obniżenie zdolności do przerzutu komórek przeszczepialnych nowotworów mysich. Efekt ten zaobserwowano po zastosowaniu genisteiny u myszy, którym przeszczepiono dożylnie komórki raka LL2 (94% redukcji liczby przerzutów po podaniu wyłącznie genisteiny i 85% redukcji liczby przerzutów po podaniu genisteiny po pojedynczej dawce CY). Ci sami badacze uzyskali efekt w postaci redukcji masy guza i redukcji liczby kolonii nowotworowych w płucach w przypadku myszy zaszczepionych śródskórnie lub dożylnie komórkami czerniaka po podaniu samej genisteiny (odpowiednio 42% i 27%) . Badania te dowodzą, że genisteina wykazuje oprócz wielu innych, również działanie zapobiegające przerzutom nowotworów.
Źródło genisteiny Zawartość w żywności (mg/100 g)
Mąka sojowa pełnotłusta 98,77
Mąka sojowa odtłuszczona 87,31
Nasiona soi dojrzałe, świeże 80,99
Nasiona soi dojrzałe, suche, prażone (w tym orzechy sojowe) 75,78
Natto 37,66
Chipsy sojowe 27,45
Nasiona soi dojrzałe, w puszkach 25,15
Miso 23,24
Błonnik sojowy 21,68
Tofu smażone 18,43
Pasta sojowa 17,79
Jogurt sojowy 16,59
Jako że soja jest przeważnie genetycznie modyfikowana polecam znalezienie pewnego źródła organicznej wersji (jeszcze takowa istnieją :-)(dawkowanie?im częściej tym lepiej – tj.w każdym posiłku) – ogólnie polecam supplementację aby nie narazic sie na inne zbedne substancje zawarte w soi (są już gotowe ekstrakty z genisteina nawet na allegro). Dodatkowo mogę polecić nalewkę z czerwonej koniczyny – można ją dostać na allegro. Przestrzegam jednak mężczyzn przed nadmiernym spożywaniem soi – rozregulowana gospodarka testosteron /estrogen nie przyniesie niczego dobrego – w tym wypadku poprostu z soja bym nie przesadzał(i polecał kontrolowanie poziomu testostosteronu).
Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!
Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic
Obserwuj mnie na instagramie www.instagram.com/premyslaw84
Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”
Ball S. Naturalne substancje przeciwnowotworowe. Medyk, Warszawa 2000.
Groundwater P.W. et al.: Protein Tyrosine Kinase Inhibitors, Progress in Medicinal Chemistry, 33, 233, Elsevier Science B.V., Amsterdam 1996.
Czerpak R, Pietryczuk A, Jabłońska-Trypuć A i wsp. Aktywność biologiczna izoflawonoidów i ich znaczenie terapeutyczne i kosmetyczne. Post Fitoter 2009;
(2):113-21.
Grynkiewicz G i wsp. Bioaktywny izoflawon genisteina – perspektywy zastosowań medycznych. Post Fitoter 2000; 3:15-20.
Wei H, Bowen R, Cai Q i wsp. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med 1995; 208:124-30.
Majewska M, Czeczot H. Flawonoidy w profilaktyce i terapii. Farm Pol 2009; 65:369-77.
Mizia-Malarz A, Sobol G, Woś H. Angiogeneza w przewlekłych schorzeniach zapalnych i nowotworowych. Pol Merk Lek 2008; 141:185-9.
Radzikowski C, Wietrzyk J, Grynkiewicz G i wsp. Genisteina – izoflawonoid soi o zróżnicowanym mechanizmie działania – implikacje kliniczne w lecznictwie i
prewencji chorób nowotworowych. Post Hig Med Dośw 2004; 58:128-39.
Fotsis T, Pepper M, Adlercreutz H. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr 1995; 125:790-7.
czytelniamedyczna.pl/2441,bioaktywny-izoflawon-genisteina-perspektywy-zastosowan-medycznych.html#
Materia Medica for Various Cancers – William C.S. Cho
genomed.pl/index.php/pl/profilaktyka-genetyczna/rak-piersi-jajnika
zdrowieimedycyna.com/ziololecznictwo/123-koniczyna-czerwona?tmpl=component&type=raw
mediweb.pl
epid.coi.waw.pl/krn/