tgf-beta

Spojrzenie poza boreliozę – konferencja medyczno-zdrowotna cz.2

Spojrzenie poza Boreliozę jest to tytuł konferencji zdrowotnej , która zorganizowana była już dobre pare lat temu przez Dr.Klinghardta i jego Akademię w Redmond – USA. Notatki standardowo pochodzą od Scotta – człowieka o holistycznym podejściu do zdrowia, który przeszedł wszystkie możliwe opcje lecznicze w swoim powrocie do zdrowia zaleczając tym samym boreliozę,koinfekcje i masę innych zdrowotnych problemów które się z nimi związane. Jest to część druga.

 

 

Dr. Dietrich Klinghardt – gronkowiec w nosie
– Leczenie gronka w nosie składa się z 4 rzeczy:
– Usuń syf/gluty z membran śluzówki nosa. Można do tego celu użyć czajniczka do płukań nosa/zatok – 1/2 łyżeczki soli z 1/2 łyżeczki sody do pieczenia, alkala lub tri-salts oraz 1 łyżeczka ksylitolu.
– Ksylitol uśmierca bakterie. Pleśń i gronkowiec toną w ksylitolu umierając. Używaj ciepłej wody.
– zresetuj układ immunologiczny i śluzówkę poprzez używanie sprayu z moczem do nosa. Można do tego użyć butelek z solą fizjologiczną do wpsikiwania do nosa pozbywając się uprzednio ich zawartości.
– Można wtedy ją wypełnić własnym moczem i kilkoma kroplami jodu. Jod rozwala ściany komórkowe mikrobów i są one wtedy dostępne dla układu immunologicznego.
– Donosowe wpsikiwanie moczu robione jest przez 2-3miesiące w celu wyregulowania układu immunologicznego.
– Niekórz piją 1/2 szklanki moczu 2x dziennie do stymulacji układu immuno.jak i układu pokarmowego.
– Pleo-Rec – 1 kropla 2 do 4x dziennie do każdej dziurki. Ma działanie przeciwbakteryjne i mobilizuje atak na gronkowca. Jeśli chcesz użyc auto-uryny i Pleo-Rec używaj ich osobno w pewnym odstępie czasowym.
– Sprey BEG to kolejna opcja. Jeszcze inna jest 2/3 butelki czystej wody a 1/3 to Rizole i fosfolipidy. Rifampin 300mg 2x dziennie przez 6tygodni. Homeopatyczna Mucosa Complex Heel 10 kropli 3x dziennie z Heel Sinusitis nosode. Retchs regulat do nosa może być także pomocny
– Polepsz przepływ powietrza przez nos używając NCR(NeuralCranial Restructuring)
– Ludzie głównie mają chroniczne infekcje zatok. 25-30% ma gronkowca w nosie. Pojawia się wtedy ból w dolnym odcinku kręgosłupa. Żyły dolnej części ciałą oraz górnego odcinka zatok są ze sobą połączone

 

Klinghardt – paciorkowiec
– Paciorkowiec/PANDAS – chroniczna infekcja paciorkowcem to najczęstrzy przeoczony problem u 95% dzieci z autyzmem
– Płukanki gardła Rizolami czy też oksytocyną może pomóc tak samo jak MMS. Używaj Gamma do płykania buzi lub donosowo
– Naturalna terapia może być pomocna
– Zithromax 500mg raz tyggodniowo przez 6 miesięcy
– Valkion
– Medykamenty Enderlin takie jak Pleo Not, Pleo San Pseu, Pleo Art A i inne mogą być użyte. Pleo San Pseu or Pleo Art A mogą być użyte w formie zastrzyków

 

Klinghardt – pleśń
– Amerykanie mają niespotykane budownictwo. Drewniane struktury ramowe z plastikowymi workami dookoła nich. Jest to idealne środowisko do rozwoju pleśni.
– Ekspozycja pleśni na pole elektromagnetyczne w warunkach laboratoryjnych wykazała jej 600x większą toksyczność niż bez tego pola oraz wielokrotnie szybszy wzrost
– Może być tak, że pole elektromagnetyczne samo w sobie nie uszkadza komórek w naszym ciele ale ma wpływ na mikroby w nas co powoduje większe ilości biotoksyn
– Pleśń tworzy biotoksyny(mykotoksyny) w celu obronnym
– Większość pacjentów ma aspergillusa
– Myrrh możę być pomocne w zwiększeniu MSH jeśli używane jest w dyfuzorze
– Osoby z problemami z pleśnia mają często negatywne reakcje na DMSA – może to być również związane z siarką
– Actos włącza receptory PPAR gamma co sprzyja detoksowi. Chlorella robi to lepiej niż Actos
– Chlorella robi to co robi cholestyramina ale robi to lepiej. Bóg stworzył substancję która jest mieszanką Actos i Cholestyraminy – chlorelle. Wysokie dawki chlorelli
są lepsze niż niskie. Niskei dawki bardziej się mobilizują niż sciągają toksyny. 20tabletek 3x dziennie 30min przed posiłkiem.
– Olej rybi w dużych dawkach włącza receptory PPAR gamma. chlorella z olejem rybim może być mocną kombinacją
– Nawet ekspozycja na pleśń w samochodzie może być wystarczająca do reaktywacji negatywnego cyklu
TGF-b1 prowadzi do remodelingu naczyń krwionośnych. Może prowadzić do zwłóknienia płuc
– Pleśń łączy ze sobą metale ciężkie do swojej obrony przed leukocytami. Leukocyty są zabijane przez rtęć jednak sama pleśń nie jest.
– MSH jest peptydem hipokampu który zaangażowany jest w wytwarzanie cytokin. Niskie jego poziomy związane są z pleśnią, MARCoNS(gronkowiec), polem elektromagnetycznym i boreliozą
– MSH może być zwiększone poprzez inhalacje olejku z Mirry (używaj dyfuzora a nie nebulizora). Może przywrócić z powrotem energię. Dramatycznie zwiększa MSH. Zapomnij o ATP, koenzymie Q10, glutationie itp. Podwyższ MSH i zobaczysz cuda. Nalewka z mirry jest dobra przeciwbakteryjnie.
– ADH jest związane z reabsorbcją wody. Z chroniczną boreliozą lub pleśnia, przysadka mózgowa przestaje działać poprawnie i organizm nie produkuje ADH. Kiedy wstajesz i jest brak ADH, nerki moga fizycznie nie domagać. Kiedy ludzie mają dużo spięc(są naelektryzowani) dotykając czegokolwiek może to być markerem niskiego ADH.
– Istnieje lek w postaci spray ADH do nosa. 1 litr wody zmiksowany z 2-3łyżkami matrix electrolytes, 1 kubek M-water, 2 łyżki Matrix minerals może tutaj pomóc.
Bardzo ważny jest regenerujący sen oraz eliminacja pola elektromagnetycznego
– VIP reguluje przepływ krwi i odpowiedź stanu zapalnego. Jeśli podajesz komuś rekę i kładziesz ją za jego szyja i obie są zimne może to być marker problemów z tarczycą.
Jeśli ręce są zimne a szyja ciepła, może to sugerować problemy z mikrokrążeniem i braki hormonu VIP. Zmęczenie po wysiłkowe to możę być niedobór VIP.
Kiedy kolory wyglądają dziwnie lub masz obecne męty w oczach może to być symptom niskiego poziomu VIP. Istnieje spray do nosa z hormonem VIP który można używać w celu zwiększenia poziomu tego hormonu, 1 psiknięcie 4x dziennie do każdej dziurki. Przed tym jak go użyjesz musisz pozbyć się pleśni w domu i w miejscu w którym pracujesz.
– Płukanki zatok, pozbycie się amalgamatów, terapia neuralna, autouryna, redukcja ekspozycji na pole elektromagnetyczne i regenerujący syn są tutaj ważne.
– MMP-9 będzie na normalnym poziomie kiedy pacjent przejdzie przez leczenie. MMP9 zależne jest od cynku. Jest to mechanizm któgo używają patogeny.
Jeśli ktoś będzie suplementował cynk, kiedy MMP9 jest podwyższone doprowadzi to do rozpadu tkanek i pogorszy sytuacje. Wysokie MMP-9 szybko postaża ludzi.
– Rozważ zaadresowanie zębów, kanałów korzeniowych, infekcji zatok, redukcji ekspozycji na pole elektro-mag. Nano kurkumina z pieprzem 350mg 2x dziennie.
Leczenie KPU przy wysokim MMP9 pogorszy sprawę. Dopilnuj aby MMP9 było nisko przed suplementacją cynkiem.
– Liposomalna ALA może być użyteczna na mykotoksyny. Liposomy powodują lepszą absorbcję przed przejściem go do jelit gdzie mikroby użyją go do swojej protekcji.
– Biopure ma liposomalną ALA(kwas alfa liponowy) – 2 pipety 3x dziennie

 

Dr.Stephen Fry – biofilm i FL1953
– Biofilmy to struktury bakteryjne zbudowane z polimerowej macierzy i przyczepione do żyjącej powierzchni
– Płytka nazębna to biofilm
– Biofilmy występują na urządzeniach medycznych, w wodzie pitnej, zębach, dziobach statków, w olejach, wodzie chłodniczej, podczas przetwarzania jedzenia czy wytwarzania papieru
– Biofilmy zawierają wapń, żelazo i magnez
– Chroniczne zawalenie zatok czy choroba wieńcowa może być związana z biofilmami
– Alzheimer i inne choroby mogą być związane z biofilmami
– Wysiękowe zapalenie ucha środkowego – przez 99% czasu choroby obecny jest złożony biofilm
– Minocyklina i Klindamycyna(PD:antybiotyki) – obydwa produkty mają działanie przeciwpasożytnicze
– Osoby ze stwardnieniem zanikowym bocznym mają mocno rozwinięty biofilm w swoim krwiobiegu
– Fry labs to pierwsze laboratorium które poinformowało na temat pierwotniaka(FL1953) produkującego biofilm
– Wszystkie osoby z SLA mają pałeczki Ralstonia oraz FL1953
– FL1953 to coś nowego. To nie babesia, malaria, toksoplazmoza – jest unikatowa.

– FL1953 produkuje więcej biofilmu niż pałeczka ropy błękitnej
– Biofilm w warunkach laboratoryjnych produkowany przez tego mikroba jest tak silny, że nie mogą go odkleić od szkiełek laboratoryjnych
– Włókna obserwowane w układzie przepływu Dopplerowskiego mogą być biofilmami.
– Syndrom przewlekłego zmęczenia to wstęp do stwardnienia rozsianego i innych chorób neurodegeneracyjnych
– 81% moskitów, które złapali w stanie Arizona zawierało FL1953
– Sprawdzali też psy, im starszy tym większa szansa że posiadał te organizmy
– Dr.Fry używa tetracyklin, plaquenilu i innych substancji
– Przyznał, że niektóre zioła działają lepiej niż antybiotyki
– Arginina, kwas foliowy, magnez mogą być problematyczne i nie używa ich u swoich pacjentów
– Stosuje dietę niskotłuszczową McDougalla gdyż biofilmy to tłuszcz który do nich przylega i jedząc go,nawet w formie zdrowych tłuszczy możemy powodować pogorszenie się biofilmów.
– Dieta Swank na stwardnienie rozsiane może być pomocna
– Laboratorium Dr.Fry pracuje nad lekami na które czułe jest FL1953
– FL1953 zmieniło nazwe i nazywane jest obecnie Protomyxzoa rheumatica
– Ivermektyna, przeciwpasożytnicze i antyhelmintyki to leki które się sprawdzają
– Dr.Fry opowiadał na temat zabiegu CCSVI jako mechanicznym podejściu do usuwania biofilmów
– Jeśli dasz więcej kwasów tłuszczowych, zwiększysz wzrost organizmów 150x. Organizmy lubią tłuszczu więc jego ograniczenie może być kluczem do wyzdrowienia
– Bez mięsa, bez sera, bez olejów, bez awokado i orzechów
– FL1953 tworzy biofilmy, jest hematogenny i można się nim zarazić. Przylega do ścian krwionośnych /nabłonka. Uwielbia lipidy. Jest jak pasożyt odporny na leki. Może powodować silne reakcje herx.
– FL1953 to podstawowy patogen – powoduje immunosupresję. Kiedy przeleczysz pasożyty i grzyba, bakterie łatwiej pokonać.
– Dr.Klinghardt zasugerował, że liposomalna artemisinina może być pomocna, gdyż te mikroby lubią tłuszcze a arte jest mocną subdstancją na pierwotniaki takie jak malaria.
– Dr.Fry uważa, że może to być przyczyna RZS

 

 

Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!

Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic

Obserwuj mnie na instagramie www.instagram.com/premyslaw84

Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”

Podziel się tym artykulem na facebooku:

Zwyrodnienie plamki żółtej (AMD) – bez tajemnic

Zwyrodnienie plamki żółtej (AMD) to choroba centralnej części siatkówki oka, która odpowiada za ostre widzenie i rozróżnianie kolorów. Metody leczenia (a raczej ich brak) w medycynie konwencjonalnej spowodowały, że zainteresowałem się tym tematem zwłaszcza, że złożoność tej choroby, proces jej powstawania łączy się z wieloma innymi czynnikami pobocznymi. Dlatego po przeczytaniu całego mojego artykułu najprawdopodobniej dojdziesz do wniosku, że przeważnie jeśli nie jesteś kobietą po menopauzie to musisz/musiałeś czy musiałaś prowadzić niewłaściwy tryb życia, doprowadzając tym samym między innymi do stanów chorobowych w oku  (genetyka w przypadku powstawania tego schorzenia ma niewielkie znaczenie). Zresztą…sam/sama zobaczysz po przeczytaniu mojego najdłuższego i najbardziej pracochłonnego artykułu opublikowanego na tym blogu, na bazie najważniejszych z 40 tysięcy badań medycznych, które musiałem przerobić by móc  z nich wyłuszczyć najistotniejsze kwestie i podsumować je w jednym miejscu. Nie chciałbym, abyś się przestraszył/przestraszyła wielością skrótów myślowych i niezrozumiałymi dla laika ścieżkami sygnałowymi(biochemia i funkcjonowanie komórki na poziomie molekularnym to moja pasja) bo niestety dokładne „podręcznikowe” objaśnienie wszystkich kwestii, nazewnictw w takim artykule wymagałoby wydania grubego tomu książki, a nie „jedynie”  napisania artykułu…weź to proszę pod uwagę. Naturalnie i tak duża objętość tekstu w artykule będzie najprawdopodobniej wymagała rozłożenia czytania go w czasie, bowiem samo jego przeczytanie to dobre 4-8godzin. Jednakże liczę, że okaże się on na tyle interesujący, że przeczytasz go w całości. Powodzenia! PS: mój komentarz podsumowujący znajdziesz na samym końcu.

 

Choroby i schorzenia towarzyszące zwyrodnieniu plamki żółtej (AMD)

  • Część osób z AMD może mieć chorobę Besta. 1)ncbi.nlm.nih.gov/pubmed/10798642
  • Bardzo często AMD wiąże się z Alzheimerem (spory odsetek osób z jednej czy też z drugiej grupy ma obydwie choroby) 2)ncbi.nlm.nih.gov/pubmed/26738356
  • Osoby we wczesnej fazie AMD mają zwiększone ryzyko chorób sercowo-naczyniowych. 3)ncbi.nlm.nih.gov/pubmed/19592102
  • U osób z tą chorobą jest zwiększona ilość przypadków niedoczynności tarczycy (wcale mnie to nie dziwi, zapewne przez zwiększone stany zapalne) 4)ncbi.nlm.nih.gov/pubmed/22577773
  • Utrata słuchu jest dość częstym problemem u osób z AMD 5)ncbi.nlm.nih.gov/pubmed/21205373
  • Osoby ze zwyrodnieniem plamki żółtej które już nie widzą, mają wysokie ciśnienie w głowie oraz ograniczony przepływ krwii w tym rejonie organizmu. 6)ncbi.nlm.nih.gov/pubmed/6145300
  • Częściej występuje u ludzi z chorobą wieńcową 7)ncbi.nlm.nih.gov/pubmed/27159771
  • Osoby z AMD mają problem z rozróżnianiem i identyfikacją węchową/zapachową 8)ncbi.nlm.nih.gov/pubmed/25871947
  • Osoby z AMD z nadciśnieniem mają zmniejszony przepływ krwi naczyniówkowej niż osoby bez nadciśnienia. 9)ncbi.nlm.nih.gov/pubmed/16488959
  • Osoby z AMD mokrym mają wysokie ryzyko zakrzepów/zatorów 10)ncbi.nlm.nih.gov/pubmed/25633305
  • Utrata słuchu w w tej chorobie może mieć związek z melaniną obecną w narządach słuchu jak i wzroku. 11)ncbi.nlm.nih.gov/pubmed/27195086
  • Bardzo ciekawa praca stwierdzająca współwystępowanie syndromu metabolicznego z AMD 12)sci-hub.hk/10.1016/j.diabres.2016.01.016
  • Do geograficznej atrofi dochodzi po 5-6 latach u osób z dużymi druzami i hiperpigmentacją plamki lub po ok.2.5roku w przypadku hipopigmentacji. 13)sci-hub.hk/10.1002/path.4266
  • Osoby z suchym typem omawianej choroby mają wyższe ryzyko zaburzeń kognitywnych i zachorowania na demencję starczą. 14)ncbi.nlm.nih.gov/pubmed/24370621
  • Osoby z suchym typem omawianej choroby mają wyższe ryzyko zaburzeń kognitywnych i zachorowania na demencję starczą. 15)ncbi.nlm.nih.gov/pubmed/24370621
  • AMD jest powiązane z większym ryzykiem udaru i krwotoku śródmózgowego. 16)ncbi.nlm.nih.gov/pubmed/16847292 17)ncbi.nlm.nih.gov/pubmed/22535267

 

 

Zwyrodnienie plamki żółtej (AMD) – czynniki zwiększające ryzyko powstania lub pogorszenia choroby

  • Spożywanie kwasu linolowego powoduje postępowanie neowaskularyzacji plamki żółtej a sam ten kwas zwiększa poziomy MDA 18)ncbi.nlm.nih.gov/pubmed/26923802
  • Produkty peroksydacji lipidów zaburzają prawidłową pracę autofagi(redukują jej działanie) przez co zwiększa się poziom lipofuscyny(akumuluje się) w komórkach nabłonka pigmentu siatkówki. 19)ncbi.nlm.nih.gov/pubmed/20059996/
  • Wysoki puls może zwiększać ryzyko AMD 20)ncbi.nlm.nih.gov/pubmed/23404120
  • Zaburzenia proteostazy(homeostaza białek) regulowana przez kolagen typu XVIII może być przyczynią degeneracji komórek nabłonka pigmentu siatkówki i nadmiernego odkładania się białek co prowadzi do neowaskularyzacji siatkówki. 21)ncbi.nlm.nih.gov/pubmed/27125427
  • Stosowanie beta blokerów zwiększa ryzyko mokrego AMD. 22)sci-hub.hk/10.1016/j.ophtha.2016.10.023
  • Niedobory hormonu FSH u kobiet przyczyniają się do powstania i postępowania miękkich druzów(złogów) w AMD. 23)ncbi.nlm.nih.gov/pubmed/28910205
  • W stwardnieniu rozsianym na skutek infekcji wirusem HHV-6 czy też EBV dochodzi do obniżenia aktywności komórek CD46 w astrocytach. CD46 regulują układ dopełniacza i bez nich dochodzi do nadaktywności tego układu w mózgu. W AMD dzieje się to samo tj.w komórkach nabłonka pigmentu siatkówki, we wczesnej fazie tej choroby, dochodzi do zmniejszenia ekspresji komórek CD46. Myszy u których dochodzi do braku tych komórek bardzo szybko rozwijają u siebie suchą formę AMD. Zakłada się, że wirus HHV-6 doprowadza do obniżenia poziomu CD46 i hiperaktywizuje układ dopełniacza u osób podatnych na AMD. 24)ncbi.nlm.nih.gov/pubmed/29093709
  • Zabieg wstrzyknięcia komórek macierzystych w tej chorobie może się skończyć odczepieniem siatkówki oka(po upływie kilku miesięcy od zabiegu) 25)ncbi.nlm.nih.gov/pubmed/28902341

  • Syntetyki anty-VEGF mogą doprowadzić do wzrostu ciśnienia w gałce ocznej 26)ncbi.nlm.nih.gov/pubmed/27046391
  • Antybiotyki obniżają działanie enzymu PON1 także należy na to uważać podczas trwania AMD 27)ncbi.nlm.nih.gov/pubmed/19577563
  • Spożywanie pokarmów o wysokim indeksie glikemicznym może przyczyniać się do zachorowania na AMD. 28)ncbi.nlm.nih.gov/pubmed/16600942
  • Cytomegalowirus może być czynnikiem ryzyka postępu choroby z typu suchego w typ mokry. 29)ncbi.nlm.nih.gov/pubmed/15364212
  • Syndrom metaboliczny w tym i wysoki poziom hormonu leptyny(a ten może być takowy w przypadku nadmiaru spożywanych soków owocowych/fruktozy) czy insuliny przyczynia się do neowaskularyzacji i tym samym postępu mokrego typu AMD. Ponadto wysoka leptyna zaburza wrażliwość siatkówki na światło. 30)ncbi.nlm.nih.gov/pubmed/25380250
  • Siatkówka jest bardzo podatna na stres oksydacyjny czy też wysokie ciśnienie tlenu. Światło UV i (a może zwłaszcza) światło niebieskie promuje powstawanie wolnych rodników – czyli zwiększa stres oksydacyjny w tym rejonie organizmu a to przecież jeden z głównych czynników powstawania tej choroby 31)ncbi.nlm.nih.gov/pubmed/1596595832)ncbi.nlm.nih.gov/pmc/articles/PMC3824279/
  • Metaloproteinazy 2 i 9 prawdopodobnie przyczyniają się do neowaskularyzacji naczyniówki w AMD. 33)ncbi.nlm.nih.gov/pubmed/9761302
  • Ciekawa informacja – wysoki poziom fT3(aktywny hormon tarczycy) zwiększa ryzyko rozwinięcia się AMD (nie sprawdzano w tym badaniu fT4). 34)ncbi.nlm.nih.gov/pubmed/25903050
  • Amyloid beta aktywuje NLRP3 inflamasomy w komórkach nabłonka pigmentu siatkówki i sugeruje się, że przyczynia się to do patogenezy AMD. 35)ncbi.nlm.nih.gov/pubmed/2800444336)ncbi.nlm.nih.gov/pubmed/26760997
  • Wysoki poziom glukozy jest czynnikiem ryzyka,niski chroni przed powstaniem w/w choroby 37)ncbi.nlm.nih.gov/pubmed/18976665
  • Czynnikiem zwiększonego ryzyka jest także nadciśnienie, wysoki cholesterol 38)sci-hub.tv/10.1007/s11010-013-1908-z
  • AIDS zwiększa ryzyko AMD 39)ncbi.nlm.nih.gov/pubmed/25769246
  • Ekspozycja na światło ultrafioletowe zwiększa ryzyko zachorowania na AMD. 40)ncbi.nlm.nih.gov/pubmed/25335979
  • Stan niedotlenienia to kolejna przyczyna powstawania AMD, i jest zwiększona w czasie wieczornym – kiedy siatkówka jest metabolicznie bardzo pobudzona. 41)ncbi.nlm.nih.gov/pubmed/24965385
  • Zaburzenia autofagii mogą być jednym z czynników patogenezy AMD 42)ncbi.nlm.nih.gov/pubmed/25955815 43)ncbi.nlm.nih.gov/pubmed/23922739
  • Nadmierne pobudzenie makrofagów lub mikrogleju może doprowadzić do AMD44) ncbi.nlm.nih.gov/pubmed/26193917
  • Stres retikulum endoplazmatycznego to kolejna przyczyna AMD ale też i retinopati cukrzycowej. Sugeruje się, że chelatacja żelaza może być dobrą opcją lecznicza stresu retikulum endoplazmatycznego. 45)ncbi.nlm.nih.gov/pubmed/26133718
  • Otyłość jest czynnikiem ryzyka(jednym z wielu) predysponujących do AMD. Sugeruje się zwiększoną konsumpcje antyoksydantów. 46)ncbi.nlm.nih.gov/pubmed/24679031
  • Częste spożywanie aspiryny wiąże się z powstawaniem obu typów AMD. 47)ncbi.nlm.nih.gov/pubmed/21920607 48)ncbi.nlm.nih.gov/pubmed/26049887
  • Ekspozycja na pestycydy wpływa(przyczynia się) na powstawanie wczesnej jak i późnej fazy AMD. 49)ncbi.nlm.nih.gov/pubmed/28886597
  • Jedno z badań sugeruje, że zmniejszona ilość nabiału to większe ryzyko późnej postaci AMD. Ogólnie mleko krowie raczej sprzyja stanom zapalnym – bardziej bym z tego badania wywnioskował, że chodzi o wapń i jego ewentualne niedobory które mogą się przyczyniać do pogorszenia stanu w opisywanej chorobie. 50)ncbi.nlm.nih.gov/pubmed/24502821
  • Cukrzyca powoduje zmianę grubości i objętości plamki żółtej. 51)ncbi.nlm.nih.gov/pubmed/19878106
  • Jednym z czynników wywołujących mokrą postać AMD i neowaskularyzację plamki żółtej jest infekcja wirusem cytomegali (CMV). Wirus ten pobudza on makrofagi do wytwarzania czynnika VEGF. 52)ncbi.nlm.nih.gov/pubmed/22570607
  • Dieta o nadmiernej ilości cholesterolu powoduje zwiększony poziom ameloidu beta oraz obniżone poziomy białka antyapoptycznego(czyli chroniącego komórki przed śmiercią) Bcl-2 i zwiększone poziomy białka powodującego śmierć komórkową – Bax. Ponadto obserwuje się druzopodobne złogi i akumulacje cholesterolu w siatkówce oka w królików poddanych takiej diecie. Sugeruje się, że nadmiernie wysokie poziomy utlenionego cholesterolu(jego metabolitów – ogzysterolów) może być problemem, który doprowadza do AMD. 53)ncbi.nlm.nih.gov/pubmed/21851605
  • Połączenie palenia plus picie alkoholu jest silnym synergicznym negatywnym działaniem, które obniża poziomy enzymów antyoksydacyjnych, powodując zniszenia DNA u osób z AMD. 54)ncbi.nlm.nih.gov/pubmed/22732472
  • Osoby z rakiem prostaty mają zwiększone ryzyko zachorowania na AMD(możliwe że chodzi o za wysoki poziom hormonu DHT, gdyż terapia zmniejszająca poziom tego hormonu obniża to ryzyko). 55)ncbi.nlm.nih.gov/pubmed/28961846
  • Osoby z nowotworami mieloproliferacyjnymi(MPN) mają zwiększone ryzyko AMD. 56)ncbi.nlm.nih.gov/pubmed/28655032
  • Tlenek azotu może przyczyniać się do AMD(przy współistnieniu niższych enzymów antyoksydacyjnych i zwiększonej peroksydacji lipidów). 57)ncbi.nlm.nih.gov/pubmed/12678277
  • Dość dziwne by się wydawało, ale zbyt duże spożycie czerwonego mięsa czy nawet drobiu zwiększa ryzyko AMD(bardzo możliwe, że chodzi tutaj o nadmiar żelaza w organizmie czy też zwiększony poziom kwasu moczowego który sprzyja AMD). 58)ncbi.nlm.nih.gov/pubmed/19234096
  • Spożywanie dodatkowych porcji wapnia w postaci suplementu może przyczyniać się do zwiększonego ryzyka zachorowania na AMD. 59)ncbi.nlm.nih.gov/pubmed/25856252
  • Jedna z teorii przyczyn powstawania AMD to zaburzenia receptora tlenowego w oku. I taką teorię wysnuł nie jeden ośrodek badawczy 60)ncbi.nlm.nih.gov/pubmed/2604982261)ncbi.nlm.nih.gov/pubmed/24447786
  • PPAR alfa to receptory, które przyczyniają się do zwyrodnienia siatkówki gdyż odpowiedzialne są za utylizację lipidów z tego rejonu. Ich zaburzenia przyczyniają się do niedoboru bioenergetycznego i neurodegeneracji. PPAR alfa są można by powiedzieć transporterami lipidów, które ułatwiają transport kwasów tłuszczowych do błon komórkowych i mitochondriów w celu utlenienia i produkcji ATP. 62)ncbi.nlm.nih.gov/pubmed/29183319
  • Dioksyny pobudzają receptor węglowodorów aromatycznych (AhR) który pobudza czynnik VEGF powodując nadmierną angiogenezę w siatkówce. 63)ncbi.nlm.nih.gov/pubmed/19182260
  • Jednym z czynników powodujących nadmierną aktywność VEGF oraz ogólnego niedotlenienia siaktówki mogą być zaburzenia transportu hemoglobiny w nabłonku pigmentu siatkówki. Takie zaburzenia mogą być wywołane np.nadmiarnem płytek krwii czy też nadmiernym pobudzeniem komórek tucznych. 64)ncbi.nlm.nih.gov/pubmed/19060278
  • Częstą infekcją u osób z AMD jest wirus herpes simplex (czyli wirus opryszczki który nie zawsze daje objawy w postaci opryszczki na wardze!). Wirus ten obniża poziomy interferonu gamma, podwyższa TNF alfa i interferonu alfa. 65)ncbi.nlm.nih.gov/pubmed/18488471
  • Jedzenie o wysokim indeksie glikemicznym to czynnik ryzyka zachorowania na tą chorobę. 66)ncbi.nlm.nih.gov/pubmed/18842800
  • W jednym z badań udowodniono, że bakteryjna endotoksyna LPS pobudza cytokiny zapalne IL-6 i 8 co powoduje stan zapalny w komórkach nabłonka pigmentu siatkówki oka prowadząc do patologi tego obszaru organizmu. 67)ncbi.nlm.nih.gov/pubmed/19157552
  • U osób z nadmiernie pobudzonymi monocytami występuje wysoki poziom cytokiny zapalnej TNF alfa – zwiększa to ryzyko neowaskularyzacji plamki żółtej. 68)ncbi.nlm.nih.gov/pubmed/15249366
  • U myszy białko CD46 jest białkiem aktywującym alternatywną drogę dopełniacza i jest obecne tylko i wyłącznie w w oku. Jego brak prowadzi do dysregulacji układu odpornościowego i nadmiernym odkładaniu się białka dopełniacza C5b-9 w nabłonku pigmentu siatkówki i naczyniówce. U myszy doprowadza to do suchej postaci AMD. 69)ncbi.nlm.nih.gov/pubmed/27295359
  • Sugeruje się, że mikrobiom ma spory wpływ na zdrowie siatkówki oka. Spożywanie produktów o wysokim indeksie glikemicznym zwiększa poziomy bakterii Firmicutes oraz Clostridia, natomiast o niskim idenksie Bacteroides – Prawidłowa mikrobiota w jelitach to zdecydowanie więcej bacteroides do firmicutes – inaczej dochodzi do nieszczelności śluzówki jelit i stanów zapalnych w różnych rejonach organizmu. Podwyższona populacja bakterii z rodziny Clostridium i Bacilli są związane z wyższym ryzykiem AMD,bacteroides z erysipelotrichi chronią z kolegi przed tą chorobą. 70)sci-hub.hk/10.1080/19490976.2018.1435247
  • Nadmierna otyłość brzuszna zwiększa stany zapalne. Według badań, osoby takie (i z AMD) mają wyższe poziomy markera stanu zapalnego CRP, cytokiny zapalnej IL-6 oraz amyloidu alfa i beta. 71)ncbi.nlm.nih.gov/pubmed/25683020
  • Niebieskie światło przyczynia się do degeneracji plamki żółtej 72)ncbi.nlm.nih.gov/pubmed/26743754
  • Viagra może przyczyniać się do zaburzeń plamki żółtej także nie ryzykowałbym z tym medykamentem 73)ncbi.nlm.nih.gov/pubmed/27355186
  • Miażdzyca to czynnik ryzyka predysponujący do AMD (a miażdzyca przecież może być spowodowana wysoką homocysteiną) 74)ncbi.nlm.nih.gov/pmc/articles/PMC1771658/
  • Możliwe, że chlamydia pneumoniae może być czynnikiem wywołującym AMD. 75)ncbi.nlm.nih.gov/pmc/articles/PMC1771658/
  • Stosowanie bifosfonianów(leki hamujące resorbcję kości) przyczynia się do powstania mokrej postaci AMD 76)ncbi.nlm.nih.gov/pubmed/27163238
  • Przewlekła choroba nerek może przyczyniać się do chorób oczu w tym i do AMD. 77)ncbi.nlm.nih.gov/pubmed/27077127
  • Światło zwiększa poziomy MCP-1 i poziomy makrofagów w komórkach nabłonka naczyniówki. 78)sciencedirect.com/science/article/pii/S0014483515000044?via%3Dihub
  • Sugeruje się, że progresja AMD może być spowodowana uprzednią infekcją wirusem CMV czy też Chlamydią pneumoniae przez które zachodzi zjawisko molekularnej mimikry czyli traktowania przez Twój organizm np.komórek pigmentu siatkówki jako wirusa CMV lub właśnie Chlamydii. Wykazano, że ekspozycja komórek nabłonka pigmentu na Chlamydie pneumoniae i makrofagi powoduje wzrost czynnika VEGF oraz cytokiny zapalnej IL-8. 79)sci-hub.hk/10.3109/08820538.2011.588666 Inne badanie pokazało, że CMV przyczynia się do progresji choroby z jej suchej postaci do mokrej. 80)sci-hub.hk/10.3109/08820538.2011.588666
  • Sugeruje się także chorobę autoimmunologiczną jako patogenezę powstania AMD 81)sci-hub.hk/10.3109/08820538.2011.588666
  • Z AMD związane są także autoprzeciwciała – alfabeta krystaliny które obecne są w tkankach ocznych oraz alfa enolaza. 82)sci-hub.hk/10.3109/08820538.2011.588666
  • Światło o długości fal 400 do 760 nm hamuje aktywność mitochondrialnych dehydrogenaz i zwiększa poziomy wolnych rodników. W AMD komórki zwojowe nie są już chronione przez pigment plamki żółtej także światło te prowadzi do śmierci komórek narządu wzroku. 83)ncbi.nlm.nih.gov/pmc/articles/PMC3652603/
  • U myszy brak dysmutazy nadtlenkowej MnSOD (SOD2) skutkuje suchą wersją AMD. 84)ncbi.nlm.nih.gov/pmc/articles/PMC2952187/
  • Dializy i końcowy etap choroby nerek(czyli już bardzo poważna dysfunkcja tego narządu) to wysokie ryzyko AMD – zastanawiam się czy może mieć to związek z pozbywaniem się metali ciężkich – wkońcu przez ten organ i z moczem jest wydalana spora ich ilość, a metale te, to podwyższone ryzyko AMD. 85)ncbi.nlm.nih.gov/pubmed/26966867
  • Polimorfizm GSTM1 (glutation s-transferazy) może być związany z rozwinięciem się AMD. 86)ncbi.nlm.nih.gov/pubmed/21212706
  • Brak lub nieprawidłowo działająca dysmutaza nadtlenkowa SOD2(MnSOD) prowadzi do kumulacji lipofuscyny oraz zgrubienia membrany Brucha a zatem i słabszego transportu składników odżywczych do plamki żółtej/siatkówki oka czy też tlenu. Z kolei niedobór SOD1 prowadzi do akumulacji złogów pod komórkami nabłonka pigmentu siatkówki oraz neowaskularyzacji naczyniówki. 87)ncbi.nlm.nih.gov/pmc/articles/PMC3419481/
  • Dieta bogata we fruktozę i syndrom metaboliczny przyczyniają się do neowaskularyzacji naczyniówki także należy uważać na to co i ile jjesz oraz na swój ogólny tryb życia. Poprzez nieprawidłową dietę zaburzona jest także ochrona siatkówki przed światłem. 88)ncbi.nlm.nih.gov/pubmed/25380250
  • Nadmiernie podniesiona aktywność hepcydyny może doprowadzać do nagromadzenia się żelaza w tkance ocznej. Jest ona podniesiona na skutek za wysokiej cytokiny IL-6 zwłaszcza w wątrobie. 89)ncbi.nlm.nih.gov/pmc/articles/PMC2919496/
  • Peroksydacja lipidów aktywuje ścieżkę WNT (poprzez stres oksydacyjny) co przyczynia się do neowaskularyzacji i stanu zapalnego w AMD. 90)ncbi.nlm.nih.gov/pmc/articles/PMC3017315/
  • Operacja zaćmy zwiększa ryzyko późniejszego zachorowania na AMD. 91)ncbi.nlm.nih.gov/pubmed/21144031
  • Stres oksydacyjny może nadmiernie pobudzić receptory CB1 i CB2 oraz obniżyć enzym FAAH(hydrolazę amidów kwasów
    tłuszczowych ) w komórkach nabłonka pigmentu siatkówki oka. 92)ncbi.nlm.nih.gov/pubmed/19547718
  • Wysokie spożycie soli przyczynia się do stanów zapalnych siatkówki co może być pośrednią przyczyną w AMD. (zresztą wysokie spożycie soli prowadzi też do nadciśnienia co jest także powiązane z tą chorobą) 93)ncbi.nlm.nih.gov/pubmed/27788256
  • Problemem są też przeciwciała przeciwko astrocytom – komórką, które utrzymują integralność bariery krew-siatkówka. 94)ncbi.nlm.nih.gov/pmc/articles/PMC4122127/
  • Aktywowane STAT3 w monocytach może przyczynić się do rozwoju neowaskularyzacji naczyniówki. 95)ncbi.nlm.nih.gov/pubmed/27009107
  • Mikroglej pobudzany jest przez utlenione białka i tłuszcze oraz przez AGE. Mikroglej w AMD powoduje rozerwanie bariery krew-siatkówka. Nadmiernie pobudzony mikroglej wraz ze stanem zapalnym prowadzi do rozwoju suchej formy AMD. 96)ncbi.nlm.nih.gov/pmc/articles/PMC4152952/
  • Nadczynność tarczycy związana jest ze zwiększonym ryzykiem AMD. 97)ncbi.nlm.nih.gov/pubmed/27716857
  • U osób z AMD wykrywane są krążące przeciwciała przeciwko siatkówce. 98)ncbi.nlm.nih.gov/pubmed/15946260
  • Malondialdehyd powoduje dysfunkcję autofagi i wytwarzania VEGF w komórkach nabłonka pigmentu siatkówki ale i nie tylko bo również zaburza połączenia ściśle zatem integralność bariery krew/oko(siatkówka). 99)ncbi.nlm.nih.gov/pubmed/26923802
  • Stosowanie(regularne) aspiryny jest związane ze zwiększonym ryzykiem mokrego AMD. 100)ncbi.nlm.nih.gov/pubmed/23337937
  • Niebieskie światło z telefonu komórkowego zwiększa poziomy białka apoptycznego(powodującego śmierć komórkową) Bax, kaspazy-3 oraz hamuje białko Bcl-2(chroni przed śmiercią) czy też białko Bcl-xl (jak Bcl-2) w komórkach nabłonka pigmentu siatkówki – powoduje konkretne zniszczenia w tego typu komórkach doprowadzająć także do zmniejszenia się grubości siatkówki i atrofi komórek fotoreceptorowych. 101)ncbi.nlm.nih.gov/pubmed/28184904 Także można powiedzieć, że  białka apoptozy i antyapoptyczne(Bax i Bcl-2) odgrywają ważną rolę w przetrwaniu komórek plamki żółtej w tej chorobie 102)ncbi.nlm.nih.gov/pubmed/21724914
  • Całkowite zahamowanie Ahr(receptor węglowodorów aromatycznych) aktywuje neowaskularyzację naczyniówki co napewno ma znaczenie w przypadku mokrego AMD. 103)ncbi.nlm.nih.gov/pubmed/25186463
  • Rozwinięcie się AMD może być spowodowane poprzez obniżoną aktywność receptora 2 VEGF (VEGFR-2). 104)ncbi.nlm.nih.gov/pubmed/27162728
  • Wysokie poziomy mleczanu a niskie pirogronianu to klasyczny marker zaburzeń mitochondriów i przedstawia słabe funkcje oksydacyjne w AMD. Sugeruje się, że zwiększone poziomy mleczanu mogą być zaangażowane w patogenezę AMD 105)ncbi.nlm.nih.gov/pubmed/25191529
  • Nadmierne spożycie witaminy A może prowadzić do wzrostu trans witaminy A (All trans retinol) w komórkach nabłonka pigmentu siatkówki. Jest on niezbędny do jej funkcjonowania jednak jego nadmiar może prowadzić do akumulacji lipofuscyny, która jest jednym z problemów patogenezy w AMD zwłaszcza suchej odmianie. Potwierdzono,że nadmiar all trans retinolu ma działanie pro angiogenne. 106)ncbi.nlm.nih.gov/pubmed/25576666
  • Jeden z produktów peroksydacji lipidów – carboxyethylpyrrole (CEP) odkłada się w siatkówce osób z AMD. Produkt ten wzburza stany zapalne. 107)ncbi.nlm.nih.gov/pubmed/25184331
  • Zaburzenia interferonu beta(jego receptorów) może doprowadzić do neowaskularyzacji w AMD. Jego zwiększenie niweluje mikroglejoze i odpowiedz zapalną makrofagów we wczesnym stadium choroby przez co zmniejsza się wielkość neowaskularyzacji w późniejszej fazie. 108)ncbi.nlm.nih.gov/pubmed/27137488
  • Sugeruje się, że chlamydia pneumoniae może przyczyniać się do powstania AMD (wykrywana jest w pewnym mniejszym że tak powiem procencie osób z AMD w ich błonie naczyniówki). 109)ncbi.nlm.nih.gov/pubmed/15909160 110)ncbi.nlm.nih.gov/pubmed/23590149
  • Obecność w nadmiarze amyloidu beta prowadzi do rozszczelnienia integralności membran mitochondriów co prowadzi do otwarcia kanałów wapniowych w tym rejonie komórki i zwiększenie poziomów cytochromu C . Wytwarzane są cytokiny prozapalne TNF alfa, IL-1alfa, IL-1beta 111)ncbi.nlm.nih.gov/pubmed/21241801/112)ncbi.nlm.nih.gov/pubmed/11424194/ 113)ncbi.nlm.nih.gov/pubmed/15762998/ ale co ciekawe już sama cytokina TNF alfa (nadmiernie pobudzona przez jakiś czynnik) przyczynia się do nadmiernej produkcji amyloidu beta.(robi to za pomocą gamma sekretazy i BACE1 czyli beta sekretazy) 114)ncbi.nlm.nih.gov/pubmed/15347683/115)ncbi.nlm.nih.gov/pubmed/17255335/ Inhibitory(blokery) TNF alfa obniżają poziomy białka prekursorowego amyloidu APP jak i sam poziom amyloidu beta.
  • Sugeruje się, że amyloid beta możę być odpowiedzialny za transport cholesterolu i homeostazę lipidów. 116)ncbi.nlm.nih.gov/pubmed/17644432/
  • Jedną z możliwości nadmiaru amyloidu beta jest nadekresja białka prekursorowego amyloidu-APP nadmiernie pobudzanego przez beta sekretazę. Akumulacja beta amyloidu w obszarze podsiatkówkowym może przyczyniać się do ok.30% redukcji komórek fotoreceptorów. 117)ncbi.nlm.nih.gov/pubmed/8225863/
  • Amyloid beta odkładając się w rejonach siatkówki powoduje aktywację receptorów TLR4 i między innymi aktywację NFkB, cytokin zapalnych IL-6,8,33 oraz czynnika VEGF i bFGF(czynnik wzrostu fibroblastów). Sugeruje się, że zahamowanie pobudzenia TLR4 może być jedną ze strategi leczniczych w tym schorzeniu. 118)ncbi.nlm.nih.gov/pubmed/26936827
  • Mleko (i ogólnie cały nabiał) ze względu na kazeinę w nim zawartą, przyczynia się do neowaskularyzacji i może przyczyniać się do AMD. 119)ncbi.nlm.nih.gov/pmc/articles/PMC4627205/
  • MDA(malondialdehyd) powoduje zaburzenia autofagi zwiększając ryzyko AMD. Spożywanie kwasu linolowego przyczynia się do postępowania neowaskularyzacji naczyniówki oraz zwiększa poziomy MDA. (MDA zwiększa czynnik VEGF oraz zaburza działanie połączeń ścisłych). 120)ncbi.nlm.nih.gov/pubmed/26923802
  • Przeładowanie żelazem wykrywa się w komórkach nabłonka pigmentu siatkówki, membranie brucha i druzach. Twierdzi się, że nadmiar tego pierwiastka prowadzi do patogenezy AMD 121)ncbi.nlm.nih.gov/pubmed/18040235122)ncbi.nlm.nih.gov/pubmed/12912686
  • Lipaza wątrobowa(LIPC) ,białko przenoszonące estry cholesterolu (CEPT) czy apolipoproteina E (APOE) są zaangażowane w metabolizm lipidów i są związane z patologią AMD. 123)ncbi.nlm.nih.gov/pmc/articles/PMC4091411/124)Seddon et al. (2010)125)ncbi.nlm.nih.gov/pmc/articles/PMC4876307/
  • Z wiekiem dochodzi do upośledzenia regulatorów pozbywania się cholesterolu – ABCA1 i ABCG1 które są obniżone w makrofagach zarówno u zwierząt jak i ludzi oraz w AMD. Sugeruje się, że kiedy makrofagi akumulują w sobie cholesterol, następuje zmiana ich fenotypu z M1 do M2(M1 to te prozapalne,M2 to te odubowowywujące-przeciwzapalne) i niestety promuje to konwersje z suchej do mokrej formy choroby. Wstrzyknięcie makrofagów typu M2 do zwiększa neowaskularyzację naczyniówki. 126)ncbi.nlm.nih.gov/pubmed/23562078/127)ncbi.nlm.nih.gov/pubmed/21447678/128)ncbi.nlm.nih.gov/pubmed/25704819
  • Innym problemem jest tworzenie się przeciwciał przeciwko CEP(carboxyethylpyrrole),substancji wytworzonej z utlenionych lipidów w siatkówce. Powoduje to proces autoimmunizacyjny prowadzący do degeneracji siatkówki. 129)ncbi.nlm.nih.gov/pmc/articles/PMC4122127/
  • Układ dopełniacza pobudzany jest przez cholesterol, np.czynnik I wykazuje powinowadztwo do kryształków cholesterolu. 130)ncbi.nlm.nih.gov/pmc/articles/PMC4091411/
  • Cytokina prozapalna IL-6(i jej receptor) przyczyniają się do aktywacji ścieżki zapalnej STAT3 i powodowanie neowaskularyzację naczyniówki. Zablokowanie receptora tej cytokiny hamuje MCP-1,stan zapalny, czynnik VEGF oraz infiltracje makrofagów do komórek naczyniówki. 131)ncbi.nlm.nih.gov/pubmed/17525280
  • W patogenezie AMD dochodzi do degranulacji komórek tucznych co prowadzi do śmierci naczyniówki(jej warstwy naczyń włosowatych) i pigmentu nabłonka siatkówki. Ponadto enzymy proteolityczne uwalniane z komórek tucznych mogą powodować uszkodzenia naczyniówki. 132)ncbi.nlm.nih.gov/pubmed/26931413
  • Zahamowanie utleniania się fosfolipidów w fotoreceptorach to jedna z potencjalnych interwencji leczenia AMD. 133)ncbi.nlm.nih.gov/pubmed/17563727
  • Osoby z AMD mają zwiększone ryzyko krwotoku śródmózgowego/udaru. 134)ncbi.nlm.nih.gov/pubmed/22535267
  • Wraz ze wzrostem MDA prawdopodobnie wzrasta poziom SOD(dysmutazy nadtlenkowej). 135)ncbi.nlm.nih.gov/pubmed/22067370
  • Osoby z AMD mają niższe poziomy hormonu leptyny(odpowiedzialna za uczucie sytości). 136)ncbi.nlm.nih.gov/pubmed/12724698
  • Metaloproteinaza MMP-7 także jest nadmiernie pobudzona w tym schorzeniu(prowadzi to do nadmiernej angiogenezy w AMD). 137)ncbi.nlm.nih.gov/pubmed/12005165
  • We krwi z kolei wykrywane są wyższe poziomy MDA(jeśli jest podwyższony tzn.że jest obecna peroksydacja lipidów) ,ale niższe tlenku azotu. 138)ncbi.nlm.nih.gov/pubmed/11734513
  • Zarówno niedobór jak i nadmiar tlenku azotu (NO) prowadzi do zaburzeń wzroku. iNOS(indukowana syntaza tlenku azotu) to czynnik, który w odpowiedzi na cytokiny zapalne (IL-1 , IL-6 i TNF alfa) produkuje w nadmiarze tlenek azotu doprowadzając do degeneracji nerwów optycznych czy też powodując późniejsze zmiany degeneracyjne siatkówki co w konsekwencji prowadzi do AMD. Sugeruje się, że odpowiednio użyte blokery iNOS lub jego pobudzacze mogą być wykorzystane do leczenia tego schorzenia. 139)ncbi.nlm.nih.gov/pubmed/11324986
  • Większość ludzi z AMD ma choroby przyzębia i u takich osób wykrywane są zmiany zapalne w jamie ustnej. 140)ncbi.nlm.nih.gov/pubmed/22783741
  • Występuje problem z przeciwciałami przeciwko siatkówce oka – nie wiadomo jednak czy jest to jeden z głównych powodów powstawania AMD czy tylko dodatkowa korealacja że tak powiem. 141)ncbi.nlm.nih.gov/pubmed/1905796
  • Tlenek azotu oraz peroksydacja lipidów obniżają enzymy antyoksydacyjne u osób z tą chorobą. Sugeruje się ich udział w rozwoju tego schorzenia. 142)ncbi.nlm.nih.gov/pubmed/12678277
  • Białe światło padające na siatkówkę powoduje zaburzenia integralności(rozwala to połączenie) zewnętrznej bariery krew-siatkówka. Dochodzi do zaburzeń autofagii i śmierci komórkowej(nekrozy) komórek nabłonka pigmentu siatkówki. 143)ncbi.nlm.nih.gov/pubmed/28661040
  • Lipopolisacharyd LPS poprzez stymulację cytokin zapalnych IL-6,IL-8,IL-4,interferonu gamma, MCP-1 i przeciwzapalnej cytokiny IL-10 – prowadzi do degeneracji komórek śródbłonka pigmentu siatkówki (LPS jest to substancja,znajdująca się praktycznie na każdej błonie komórkowej bakterii gram ujemnych). 144)ncbi.nlm.nih.gov/pubmed/19157552
  • Malondialdehyd(MDA) powoduje dysfunkcje autofagi i wydzielanie się VEGF w pigmencie komórek nabłonka siatkówki. 145)ncbi.nlm.nih.gov/pubmed/26923802
  • Amyloid beta działa destrukcyjnie na membrany Brucha i akumuluje się w tym rejonie oraz w nabłonku komórek pigmentowych. To prowadzi do neowaskularyzacji i formowania się membran fibrowaskularnych. 146)ncbi.nlm.nih.gov/pubmed/8604533
  • Stres oksydacyjny wzburza metaloproteinazy 1 i 3 w śrudbłonku pigmentu siatkówki co przyczynia się do degradacji kolagenu typu 1. 147)ncbi.nlm.nih.gov/pubmed/19516002
  • kwas linolowy aktywuje aktywność genów iNOS i COX-2 przez co następuje produkcja prostaglandyny E2 (PGE2) (substancja zapalna,wywołująca ból) i tlenku azotu w komórkach nabłonka pigmentu siatkówki. Ponadto aktywuje czynnik transkrycyjny NF-kB(aktywuje stany zapalne).
  • Niebieskie światło redukuje aktywność metaboliczną komórek nabłonka pigmentu siatkówki, zwiększa wewnątrzkomórkowy poziom wolnych rodników i aktywność białek związanych ze stresem takich jak oksygenazę hemu 1 (HO-1), osteopontyna czy białko szoku cieplnego 27 (Hsp-27) jak i dysmutazę nadtlenkową MnSOD(SOD2). 148)ncbi.nlm.nih.gov/pubmed/19784391
  • Obniżona autofagia może doprowadzić do AMD 149)ncbi.nlm.nih.gov/pubmed/18992957/
  • Nadmiar IGF-1 prowadzi do odwarstwienia się siatkówki, zaburzeń mikrokrążenia czy też pogrubienia kapilar. 150)ncbi.nlm.nih.gov/pubmed/1508519
  • Sugeruje się, że AMD (mokra postać) może być chorobą autoimmunologiczną gdyż występują w niej przeciwciała przeciwko siatkówce jak i także przeciwko zewnątrzkomórkowej macierzy membrany Brucha czy przeciwko druzom. 151)ncbi.nlm.nih.gov/pmc/articles/PMC4022009/
  • Zaburzenia receptorów P2X7 powodują redukcję fagocytozy, zgrubienie membrany Brucha i dysfunkcje nabłonka pigmentu siatkówki. 152)ncbi.nlm.nih.gov/pubmed/28628761
  • Zwiększony poziom mleczanu w cytoplazmie komórkowej zwiększa ekspresję czynnika VEGF co powoduje neowaskularyzację w AMD. 153)ncbi.nlm.nih.gov/pubmed/28689265
  • Zaćma(katarakta) tzn.operacja tej choroby może przyczyniać się do rozwinięcia AMD lub progresji tej choroby 154)ncbi.nlm.nih.gov/pubmed/25325855/
  • Przeciwciała przeciwko fosfotydyloserynie zwiększają ryzyko neowaskularyzacji naczyniówki 44x. 155)ncbi.nlm.nih.gov/pmc/articles/PMC4992630/#R266
  • VEGF-A aktywuje NLRP3 inflamasomy i jest to wystarczające do zapoczątkowania patologi zarówno AMD suchego jak i mokrego. Sugeruje się, że blokery VEGF i cytokiny IL-1beta czy też NLRFP3 inflamasomów zahamują postęp obu form AMD. 156)ncbi.nlm.nih.gov/pubmed/24012762
  • Metaloproteinazy powodują rozregulowanie układu naczyń krwionośnych, degeneracje RODS AND CONES w rejonie plamki żółtej siatkówki co prowadzi do zaburzeń ostrości widzenia. Ponadto wysokie poziomy glukozy(czy też jej po prostu zbyt mocne wystrzały w organizmie po zjedzeniu niekorzystnego posiłku) powodują produkcję MMP-9. MMP9 wraz z MMP2 zaburza funkcjonowanie połączeń ścisłych. 157)ncbi.nlm.nih.gov/pmc/articles/PMC5554853/
  • W jednym badaniu podawano szczurom żelazo prawie od młodego wieku. Po ich poćwiartowaniu kiedy miały 20miesięcy(zapewne zdechły już w tym wieku bo to sędziwy wiek dla szczura) sprawdzono akumulację żelaza w siatkówce względem grupy kontrolnej, która żelaza nie dostawała. Siatkówka była przeładowana żelazem(komórki nabłonka pigmentu siatkówki). 158)ncbi.nlm.nih.gov/pubmed/28993186159)ncbi.nlm.nih.gov/pubmed/26275132
  • We krwi osób z AMD wykrywa się autoprzeciwciała przeciwko plamce żółtej 160)ncbi.nlm.nih.gov/pubmed/26717306 . Moje pytanie brzmi – dlaczego nie stosuje się jeszcze plazmoferezy u takich pacjentów?(plazmofereza oczyszcza krew z autoprzeciwciał i jest stosowana w wielu przypadkach chorób autoimmunologicznych)
  • Spekuluje się, że aluminium może być również problemem w AMD takim samym, jakim jest jego akumulacja w mózgach osob z alzheimerem. 161)ncbi.nlm.nih.gov/pmc/articles/PMC4362880/
  • Kwas linolowy to tłuszcz występujący np.w nabiale – powoduje od pobudzenie iNOS(indukowana syntaza tlenku azotu) oraz COX-2(cyklooksygenaza 2) – 2 czynników, które zwiększają stan zapalny w komórkach nabłonka pigmentu siatkówki oka. 162)ncbi.nlm.nih.gov/pubmed/17825288
  • Jednym z czynników ryzyka zachorowania na AMD może być bakteria chlamydia pneumoniae 163)ncbi.nlm.nih.gov/pubmed/20393111
  • W suchej odmianie AMD dochodzi do zgrubienia membrany Brucha oraz odkładaniu się pod nabłonkiem pigmentu siatkówki złogów zwanych druzami, które mogą być twarde lub miękkie. Na dodatek kumulują się lipidy które zaburzają effluks płynów z nabłonka pigmentu siatkówki przez membrane Brucha, co powoduje stres oksydacyjny. Ponadto występuje akumulacja lipofuscyny w nabłonku pigmentu komórek siatkówki co zaburza funkcjonowanie lizosomu i metabolizm cholesterolu. 164)ncbi.nlm.nih.gov/pmc/articles/PMC3864379/
  • Alergia chroni przed AMD (zapewne dlatego, iż alergie to domena nadmiernie pobudzonych limfocytów th2 czyli cytokin przeciwzapalnych) 165)ncbi.nlm.nih.gov/pubmed/24235017
  • Im dłuższe karmienie dziecka mlekiem matki tym niższe ryzyko zachorowania na AMD u kobiet. 166)ncbi.nlm.nih.gov/pubmed/23759439
  • Długa ekspozycja oka na światło niebieskie czy fioletowe prowadzi do nadmiernego pobudzenia metaloproteinaz(3 i 9). Największe pobudzenie bo aż ponad 4 krotne powodowało światło niebieskie. 167)ncbi.nlm.nih.gov/pubmed/20238014
  • 7KCh to prozapalny exosterol który obecny jest kiedy są wysokie poziomy utlenionego cholesterolu LDL. Pobudza on VEGF oraz cytokiny zapalne IL-6 i 8 – może on przyczyniać się do AMD gdyż powiązano go z depozytami liproproteiny w membranie Brucha i w nabłonku pigmentu siatkówki oka. 168)ncbi.nlm.nih.gov/pubmed/20567027
  • Klaudyna 19 jest to substancja, która pełni funkcję bariery ludzkiego nabłonka barwnikowego siatkówki i hamuje rozprzestrzenianie się obrzęku występującego w AMD. 169)ncbi.nlm.nih.gov/pubmed/21071746
  • Pentraksyna 3 (PTX3) to element wrodzonego układu odpornościowego, który jest pobudzany przez stres oksydacyjny w AMD. Jej brak prowadzi do zwiększonego poziomu C3a, FB(czynnik B układu dopełniacza), C3d. C3a z kolei pobudza wtedy cytokinę zapalną IL-1beta. Stwierdza się, że PT3 hamuje aktywację inflammasomów poprzez regulację czynnika H w komórkach nabłonka pigmentu siatkówki. 170)ncbi.nlm.nih.gov/pubmed/27659908
  • Komórki tuczne w geograficznej atrofii mogą przyczynić się do dodatkowych zniszczeń. Należy pamiętać, że pobudzony układ dopełniacza stymuluje degranulację (’aktywność’) komórek tucznych. 171)ncbi.nlm.nih.gov/pmc/articles/PMC3864379/
  • Beta sekretaza(BACE1) jak i BACE2 i ich brak/zaburzenia prowadzą do spłycenia warstwy siatkówki, apoptozy jej komórek i redukcji gęstości waskularnej siatkówki jak i także zwiększenia ilości lipofuscyny. Aktywność BACE1 jest najwyższa w neuralnej części siatkówki, natomiast BACE2 w nabłonku pigmentu siatkówki/naczyniówce. Stwierdza się, że stosowanie inhibitorów BACE pogorszy stan osób z AMD i może doprowadzić do AMD. 172)ncbi.nlm.nih.gov/pubmed/22903875
  • Lipoproteiny degradowane przez lipaze wątrobową , akumulują się w zewnętrznej siatkówce i w druzach. Może prowadzić to do aktywacji układu dopełniacza i powodować dysfunkcje komórek nabłonka pigmentu siatkówki. 173)ncbi.nlm.nih.gov/pubmed/25205869
  • Stosowanie inhibitorów pompy protonowej(leki na refluks) pogarsza halucynacje(jeśli są) w AMD. 174)ncbi.nlm.nih.gov/pubmed/23341015
  • AMD to nie tylko nadmiar żelaza ale i również hiperpigmentacja – do której doprowadza to pierwsze. Żelazo doprowadza do melanogenezy. 175)ncbi.nlm.nih.gov/pubmed/25277027
  • Żelazo może nadmiernie pobudzić produkcję białka prekursorowego amyloidu (APP). Jako,że amyloid beta to półprodukt proteolizy APP i jest znajdowany w druzach sprawdzono czy żelazo może zwiększać poziomy amyloidu beta w komórkach nabłonka pigmentu oka. Potwierdzono, że faktycznie tak się dzieje. 176)ncbi.nlm.nih.gov/pubmed/25456519
  • Wirusy CMV i HSV1 są infekcjami, które współtowarzyszą w chorobie AMD i mogą mieć na nią wpływ. 177)ncbi.nlm.nih.gov/pubmed/26489120
  • Choroba Ealesa to choroba związana z nadmierną angiogenezą siatkówki i stanem zapalnym z tym związanym. Problemem jest między innymi nadmiernie wysoka homocysteina. 178)ncbi.nlm.nih.gov/pubmed/23761385
  • Zahamowanie VEGF to spore zagrożenie gdyż czynnik ten pełni też funkcje neuroprotekcyjne względem neuronów siatkówki. 179)ncbi.nlm.nih.gov/pubmed/18978936
  • Druzy to złogi zawierające cholesterol o żółtym lub białym kolorze – sugeruje się, że powstają ze względu na zaburzenia homeostazy cholesterolu. Wykazano, że niskie poziomy transportera cholesterolu ABCA1 powoduje zwiększenie wewnątrzkomórkowego cholesterolu i jego utlenionych metabolitów. Wykazano także, że wyczerpanie tego transportera w makrofagach prowadzi do zwiększonej retencji cholesterolu w makrofagach i zwiększa neowaskularyzację naczyniówki.
  • Syntetyki anty VEGF zwiększają ryzyko geograficznej atrofi 180)ncbi.nlm.nih.gov/pubmed/27716750
  • Terapia syntetykami anty VEGF tak naprawdę nie ma końca i z każdym wstrzyknięciem substancji hamującej VEGF istnieje ryzyko uszkodzenia(wkońcu jest to zabieg inwazyjny) czy też odklejenia się siatkówki jak i również pojawienia się geograficznej atrofi czyli najgorszego stadium AMD. 181)sci-hub.hk/10.1586/1744666X.2014.950231182)ncbi.nlm.nih.gov/pubmed/29196768
  • Obniżone poziomy trombospondyny-1 (TSP-1) w membranie Brucha i naczyniach krwionośnych naczyniówki podczas AMD może doprowadzić do neowaskularyzacji naczyniówki. 183)ncbi.nlm.nih.gov/pubmed/16361667184)ncbi.nlm.nih.gov/pubmed/26062001
  • PPAR alfa to receptory które są kluczowe w utrzymaniu przy życiu neuronów siatkówki. Myszy bez tego genu rozwijają degradację siatkówki już w 8 tygodniu życia. Ponadto receptory te są odpowiedzialne za transport lipidów, ułatwiając internalizację kwasów tłuszczowych do błon komórkowych i mitochondriów w celu utlenienie i produkcji ATP.185)ncbi.nlm.nih.gov/pubmed/29183319
  • Podawanie leków hamujących cytokinę TNF takich jak np.infliximab jest toksyczne(w za dużych dawkach, czy Twój lekarz jest w stanie określić taka wartość dla Ciebie?tak naprawde to nie możliwe…) i często powoduje stany zapalne w miejscu wstrzyknięcia więc nazwałbym taką interwencje 'o kant d…rozbić’ i wręcz mocno szkodliwą dla pacjentów. 186)ncbi.nlm.nih.gov/pubmed/19996827/ 187)ncbi.nlm.nih.gov/pubmed/22737386/
  • Komórki zwojowe siatkówki i ich śmierć powodują zaburzenia wzroku, neuropatie optyczne w tym jaskrę i AMD. Wykazano że do ich patologi przyczyniają się kanały potasowe(różne typy). Wskazno także, że kanały KCA (są to kanały potasowe aktywowane wapniem) są nadmiernie pobudzone i skorygowanie tego problemu może być jedną ze strategii leczniczych 188)ncbi.nlm.nih.gov/pubmed/23732984
  • Cytokina zapalna IL-17A pobudza cytokinę IL-1beta w komórkach nabłonka pigmentu siatkówki poprzez aktywację inflammasomu NLRP3. Jej zahamowanie może mieć działanie lecznicze w AMD. 189)ncbi.nlm.nih.gov/pubmed/26830368
  • Produkty peroksydacji lipidów zaburzają prawidłową pracę autofagi(redukują jej działanie) przez co zwiększa się poziom lipofuscyny(akumuluje się) w komórkach nabłonka pigmentu siatkówki. 190)ncbi.nlm.nih.gov/pubmed/20059996/
  • GDNF,BDNF i PEDF pobudzają transportery cynku. Także należy je pobudzać,aby przeciwdziałać niedoborom tego najważniejszego minerału w tej chorobie. 191)ncbi.nlm.nih.gov/pubmed/18326752
  • Ketony także powodują zniszczenia w AMD także dieta tłuszczowa raczej odpada. 192)ncbi.nlm.nih.gov/pmc/articles/PMC5757825/
  • Żelazo i jego nagromadzenie w częściach składowych oka jest jednym z mocnych stresorów i przyczyn powstawania AMD. Jednym z mitochondrialnych antyoksydantów jest N-tert-butyl hydxylamine – substancja która podnosi status glutationu, obniża poziomy wewnątrzkomórkowego żelaza i działania antyoksydacyjnie poprawiając status mitochondriów. Sugeruje się, że podwyższenie statusu tej substancji może być przydatne w ochronie funkcjonowania komórek nabłonka pigmentu siatkówki oka w AMD. 193)ncbi.nlm.nih.gov/pubmed/17656467
  • SIRT1 znajduje się w jądrze nabłonka pigmentu siatkówki, w melanocytach jak i w cytoplazmie komórek nabłonka plamki żółtej czy też komórkach zwojowych, zewnętrznej i wewnętrznej powłoce siatkówki oka. SIRT1 chroni siatkówkę przed uszkodzeniem DNA wywołanym przez stres oksydacyjny jak i również ochrania nerw wzrokowy. Utrata czynnika transkrypcyjnego pobudzającego SIRT1 prowadzi do apoptozy komórek siatkówki u myszy. 194)sci-hub.hk/10.1016/j.exer.2013.07.017
  • Komórki Mullera (występują w siatkówce oka) wytwarzają substancje antyoksydacyjne w tym glutation, kwas mlekowy, alanine, metallotioniny, ceruloplazminę. Jednak pod wpływęm uszkodzeń, chronicznego stresu oksydacyjnego lub innych patologi(np.niedotlenienia czy cukrzycy) wytwarzają czynniki proangiogenne takie jak VEGF i FGF. 195)ncbi.nlm.nih.gov/pmc/articles/PMC4457466/
  • W mitochondriach komórkowych podczas trwania choroby AMD dochodzi do zaburzenia SIRT(biogeneza i funkcjonowanie było stłumione) oraz SIRT1. Stwierdza się, że zaburzenia tych 2 czynników prowadzą do patologii AMD i stanowi to podstawę do opracowania leków w tym kierunku. 196)ncbi.nlm.nih.gov/pubmed/27998274
  • Cytokiny zapalne Interferon gamma, TNF alfa i IL-1beta powodują obniżoną ekspresję kluczowych genów zaangażowanych w cykl widzenia, morfologię nabłonka i fagocytozę(CDH1, RPE65, RDH5, RDH10, TYR i MERTK). 197)ncbi.nlm.nih.gov/pubmed/27733811
  • Jedno z badań klinicznych w drugiej fazie wykazuje, że stosowanie w jednym czasie blokerów VEGF oraz antagonisty PDGF jest lepsze niż tylko syntetyku anty VEGF. 198)ncbi.nlm.nih.gov/pubmed/28029445
  • PDGF u zwierząt obniża ilość nabłonka pigmentu siatkówki oraz degenerację fotoreceptorów. Terapia anty VEGF zwiększa poziomy PDGF. Stwierdza się jednak, że antagoniści tego czynnika wzrostu hamują tworzenie się i dojrzewanie nowych naczyń krwionośnych co w połączeniu z substancjami anty VEGF jest obiecującą strategią leczniczą. 199)sci-hub.hk/10.1159/000438953
  • PDGF(Platelet-derived growth factor – płytkopochodny czynnik wzrostu) wykazuje działanie angiogenne i jego zahamowanie przeciwciała neowaskurazylacji (najlepiej sprawdza się to razem z czynnikami hamującymi VEGF). 200)ncbi.nlm.nih.gov/pmc/articles/PMC5563895/
  • Zaburzone działanie (lub słaba aktywność) transportera cholesterolowego ABCA1 prowadzi do polaryzacji makrofagów M2 co prowadzi do neowaskularyzacji naczyniówki.201)ncbi.nlm.nih.gov/pmc/articles/PMC3669899/
  • Każdy podtyp cytokiny TGF beta może zwiększyć syntezę i wytwarzanie czynnika VEGF w komórkach nabłonka pigmentu siatkówki a TGF-beta1 może podwyższych poziomy PDGF w tym rejonie. Angiogenina II może stymulować TGF beta co w konsekwencji przekłada się na stymulację VEGF. 202)ncbi.nlm.nih.gov/pmc/articles/PMC5158158/
  • Zabieg wstrzyknięcia komórek macierzystych w tej chorobie może się skończyć odczepieniem siatkówki oka(po upływie kilku miesięcy od zabiegu) 203)ncbi.nlm.nih.gov/pubmed/28902341
  • Syntetyki anty-VEGF mogą doprowadzić do wzrostu ciśnienia w gałce ocznej 204)ncbi.nlm.nih.gov/pubmed/27046391
  • Antybiotyki obniżają działanie enzymu PON1 także należy na to uważać podczas trwania AMD 205)ncbi.nlm.nih.gov/pubmed/19577563
  • Fosfataza PTEN to białko, które podejrzewa się o nieprawidłowe działanie co skutkuje utratą przylegania komórek nabłonka pigmentu do siatkówki i ich migracji poza siatkówkę. Powoduje to śmierć komórek fotoreceptorów. 206)ncbi.nlm.nih.gov/pubmed/18997061
  • A2E (element lipofuscyny) oraz niebieskie światło powodują stres retikulum endoplazmatycznego komórek nabłonka pigmentu siatkówki. 207)ncbi.nlm.nih.gov/pubmed/25402962
  • intralizosomalna, polimeryczna substancja, odkładająca się w różnych narzadach takich jak wątroba(tzw.plamy wątrobowe), skóra czy właśnie oczu na skutek nadmiernego stresu oksydacyjnego(w źródłach typu wikipedia znajdziesz informacje o odkładaniu się tej substancji w związku ze starzeniem się organizmu). Substancja ta zaburza także działanie autofagii – procesu niezbędnego(prawidłowo działającego) do wyzdrowienia w AMD. 208)ncbi.nlm.nih.gov/pubmed/12208347
  • Jeden z metabolitów cholesterolu 27-OHC(ogzysterol) jest toksyczny dla komórek pigmentu siatkówki. Zwiększa on produkcję peptydu amyloidu beta oraz zwiększa stres oksydacyjny. Jest problemem zarówno w Alzheimerze jak i AMD. 209)ncbi.nlm.nih.gov/pubmed/20836858
  • Stres oksydacyjny odgrywa kluczową rolę w zwyrodnieniu plamki żółtej. Ten rejon organizmu ma jednak czynniki obronne które pomagają mu w walce z wolnymi rodnikami – mowa o enzymie Nrf2 – jego zaburzenia w działaniu prowadzą do zniszczeń spowodowanych przez wolne rodniki oraz odpowiedź wrodzonego układu odpornościowego, który może spowodować śmierć komórek nabłonka pigmentu siatkówki. Ponadto plamka żółta gromadzi wiele molekuł oksydacyjnych takich jak końcowe produkcji glikacji, MDA, końcowy produkt peroksydacji lipidów (4-hydroxynonenal),carboxyethylpyrrole co skutkuje aktywacją układu odpornościowego. 210)ncbi.nlm.nih.gov/pubmed/22503691211)ncbi.nlm.nih.gov/pubmed/28461502
  • Zahamowanie autofagi prowadzi do aktywacji inflammasomów (jest to wewnątrzkomórkowy kompleks białkowy, który wykrywa patogeny i stres oksydacyjny, aktywuje cytokiny prozapalne IL-1beta i IL-18. Kompleks ten aktywuje również śmierć komórkową). Wykazano także nadmierną aktywację kaspazy 3 – komponentu kompleksu inflammasomowego oraz receptora NRLP3(receptor inflammasomowy). Nawet niskie poziomy IL-1beta mogą podniesc poziomy cytokiny zapalnej IL-8 i tak się stało w tym badaniu w komórkach nabłonka pigmentu siatkówki. 212)ncbi.nlm.nih.gov/pubmed/25268952
  • Kwas alltrans retinowyA(all trans retinoic acid) stymuluje aktywność genu VEGF. 213)ncbi.nlm.nih.gov/pubmed/16386082
  • Cytokina zapalna IL-17(nadmiar) powoduje angiogenezę w komórkach nabłonka naczyniówki in vitro. 214)ncbi.nlm.nih.gov/pubmed/25228547
  • Angiotensyna II to hormon związany z nadciśnieniem, zwiększa metaloproteinazę MMP-2 i jej regulator – metaloproteinazę 14 (MMP-14) co powoduje rozłam membrany podstawowej komórek nabłonka pigmentu siatkówki co może spowodować postęp/progresje podsiatkówkowych złogów. 215)ncbi.nlm.nih.gov/pubmed/21641389
  • Zaburzenia dzialania cytokiny TGF beta powodują waskularyzację naczyniówki(brak tej cytokiny w tkance nabłonkowej naczyniówki powoduje jej neowaskularyzację). 216)ncbi.nlm.nih.gov/pubmed/28823871
  • Ekspozycja na światło powoduje zmniejszoną ilość jonów żelaza i zwiększony pobór żelaza w komórkach fotoreceptorów w AMD. 217)ncbi.nlm.nih.gov/pubmed/25447561
  • Brak elementu układu dopełniacza – czynnika H (CFH) powoduje ustanie stanu zapalnego oraz ochroniło myszy przed patogeniczną podsiatkówkową akumulacją mononuklearnych fagocytów(do czego dochodzi w AMD). Ponadto zahamowana została aktywacja mikrogleju który sam w sobie powoduje stany zapalne i stres oksydacyjny. Ponadto CFH hamuje komórki CD47, udowodniono, że komórki te normalnie funkcjonujące przyspieszają pozbycie się stanu zapalnego. 218)ncbi.nlm.nih.gov/pubmed/28228282
  • Leki syntetyczne anty VEGF mogą przyspieszyć wzrost geograficznej atrofi 219)ncbi.nlm.nih.gov/pubmed/25542520
  • Hipoksja, nadaktywność układu dopełniacza razem z procesem zapalnym prowadzi do zaburzeń angiogenezy w komórkach nabłonka pigmentu siatkówki i doprowadza do nadaktywności czynnika VEGF. 220)ncbi.nlm.nih.gov/pmc/articles/PMC4152952/
  • Czynniki/białka dopełniacza – C3a i C5a rekrutują leukocyty do naczyniówki. Już sam stres oksydacyjny może aktywować układ dopełniacza w komórkach siatkówki 221)ncbi.nlm.nih.gov/pubmed/16452172/
  • Końcowy produkt peroksydacji lipidów (4hydroxynonenal – HNE) zwiększa 5 krotnie ilość inflamasomu NLRP3 w komórkach nabłonka pigmentu siatkówki. Stwierdza się, że stres oksydacyjny może aktywować inflamasomy NLRP3 w komórkach nabłonka pigmentu siatkówki 222)ncbi.nlm.nih.gov/pubmed/22698681
  • TLR3 aktywowane są w czasie śmierci komórek siatkówki. Różne badania wskazują, że mogą pełnić rolę patogeniczna a w czasie uszkodzeń tkanek – protekcyjną. Sugeruje się, że w problemach z siatkówką chronicznie pobudzone(czyli po prostu długo trwające) TLR3 może nie mieć już funkcji protekcyjnych. 223)ncbi.nlm.nih.gov/pmc/articles/PMC4250317/
  • Sugeruje się, że lipokalina-2 (LCN2) (białko odporności wrodzonej) może powodować stany zapalne w patologi AMD. 224)ncbi.nlm.nih.gov/pubmed/25257511
  • Zahamowanie autofagi może aktywować inflammasomy i zwiększyć angiogenezę w komórkach nabłonka pigmentu siatkówki. 225)ncbi.nlm.nih.gov/pubmed/26847702/
  • Zaburzenia sprzężenia zwrotnego SOCS3 prowadzą do zaburzeń sygnalizacji cytokiny zapalnej IL-10/STATS3 co promuje polaryzację makrofagów do M2 i patologiczną neowaskularyzację. 226)ncbi.nlm.nih.gov/pubmed/26260587
  • Amyloid beta powoduje AMD. 227)ncbi.nlm.nih.gov/pubmed/25385658
  • Białko o nazwie sericin prowadzi do pigmentacji w komórkach nabłonka pigmentu siatkówki poprzez aktywację ścieżki zapalnej NF-kB.(hiperpigmentacja też jest obecna w AMD i nie jest to nic dobrego) 228)ncbi.nlm.nih.gov/pubmed/26940175
  • Amyloid beta przyczepiając się do komponentu I i powodując zahamowanie jego możliwości do przekształcenia komponentu C3b do jego nieaktywnej formy iC3b. Zarówno czynnik H jak i I układu dopełniacza są komponentami hamującymi aktywację układu. (amyloid beta nie blokuje funkcji komponentu H po jego przyczepieniu się do tego komponentu). Stwierdza się, że amyloid beta aktywuje układ dopełniacza w druzach poprzez blokowanie funkcji komponentu I co prowadzi do niskopoziomowego chronicznego stanu zapalnego w tkance podsiatkówkowej. 229)ncbi.nlm.nih.gov/pubmed/18566438
  • Zdolność do autofagii spada wraz ze wzrostem akumulacji lipofuscyny czy też nadmiernej produkcji wolnych rodników.
  • Komórki Mullera absorbują płytki z tkanki siatkówki przy użyciu kanałów potasowy. Dowiedziono, że komórki te zmniejszają swoją ekspresję głównego kanału potasowego podczas niedokrwienia siatkówki,cukrzycy czy też odwarstwienia siatkówki czy zapalenia oka. Obrzęk komórek Mullera jest także powodowany przez stres oksydacyjny i stan zapalny który może być wywołany przez kwas arachidonowy czy też prostaglandyny. 230)ncbi.nlm.nih.gov/pubmed/17219109
  • Aktywacja mikrogleju przez lipopolisacharyd(LPS – to cząsteczka obecna na bakteriach gram ujemnych) zwiększa poziomy ferrytyny i żelaza w mózgu. 231)ncbi.nlm.nih.gov/pubmed/20021380/232)ncbi.nlm.nih.gov/pubmed/17551926/ 233)ncbi.nlm.nih.gov/pubmed/18442088/
  • Sugeruje się, że wewnętrznąkomórkowe nagromadzenie cholesterolu może spowodować zmianę fenotypu wytwarzanych makrofagów z prozapalnych(M1) do proangiogennych(M2). 234)ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR114
  • Fingolimod to lek stosowany w stwardnieniu rozsianym który może wywołać obrzęk plamki żółtej – jego odstawienie nie cofneło w tym przypadku klinicznego obrzęku. 235)ncbi.nlm.nih.gov/pubmed/24269406
  • Nabłonek pigmentu siatkówki pełni główną rolę w funkcjonowaniu komórek fotoreceptorówych więc jego uszkodzenie/degeneracja skutkuje rozwinięciem się AMD. 236)ncbi.nlm.nih.gov/pubmed/25268952
  • Sugeruje się, że teoretycznie jest związek z wysokim kwasem moczowym a mokrą postacią AMD. 237)ncbi.nlm.nih.gov/pubmed/21265246
  • Podwyższony poziom kwasu moczowego i glukozy prowadzi do obrzęku plamki żółtej (uszkadza barierę krew/siatkówka) 238)ncbi.nlm.nih.gov/pubmed/21242702
  • Obrzęk plamki żółtej jest związany między innymi z insulinoopornością 239)ncbi.nlm.nih.gov/pubmed/20532522
  • Amyloid beta(i jego wysokie poziomy/odkładanie się) to jeden z głównych problemów w AMD 240)ncbi.nlm.nih.gov/pubmed/25744331 241)ncbi.nlm.nih.gov/pubmed/26080579
  • Zwiększona ilość receptorów TNF alfa jest związana z patologią AMD. 242)ncbi.nlm.nih.gov/pubmed/25363549
  • Stosowanie takich leków jak ranibizumab czy bevacizumab u połowy osób doprowadzi do blizn w oku(tych fibrotycznych jak i nie) z czego ten drugi lek może doprowadzić do udaru 243)ncbi.nlm.nih.gov/pubmed/24314839244)ncbi.nlm.nih.gov/pubmed/24479739
  • Podniesienie statusu BACE1 powoduje zaburzenia okludyny(białka połączeń ścisłych chroniących barierę krew-siatkówka czy też krew-mózg) 245)ncbi.nlm.nih.gov/pubmed/24739782/ Lekki nadmiar amyloidu powoduje zwiększoną transmisję presynaptyczną zaburzając tym samym aktywację receptorów acetylocholinowych. Doprowadza to do dysfunkcji synaptycznej wywołując depresje.
  • Osadzający się 7ketocholesterol(7kCh) w membranie brucha(to najważniejszy utleniony cholesterol w AMD) prowadzi do neowaskularyzacji naczyniówki w mokrej formie AMD. 246)ncbi.nlm.nih.gov/pmc/articles/PMC5755337/ Ponadto 7kCh zaburza działanie kanałów potasowych, co też ma miejsce w Alzheimerze 247)ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR44
  • Raczej nie zaleca się hiperbarii w czasie trwania choroby plamki żółtej (wysoki poziom tlenu może zwiększyć poziomy wolnych rodników w siatkówce oka). 248)ncbi.nlm.nih.gov/pubmed/25308346
  • Niedobory enzymu PON1 są związane z AMD(ale i też np.z nadczynnością tarczycy) – co ciekawe niektóre antybiotyki hamują ten enzym także zweryfikuj jak to jest z tym 'fantem’ u Ciebie. 249)ncbi.nlm.nih.gov/pubmed/19577563
  • Terapia syntetykami obniżającymi poziomy VEGF często prowadzi do nadciśnienia w gałce ocznej i wtedy potrzebne są kolejne syntetyki do jego redukcji… 250)ncbi.nlm.nih.gov/pubmed/27046391
  • Cytokina zapalna IL-8 może przyspieszać waskularyzację w wysiękowym typie AMD. 251)ncbi.nlm.nih.gov/pubmed/26154559
  • Długość telomerów leukocytów odgrywa znaczącą rolę w patogenezie AMD(badanie na populacji chińskiej). 252)ncbi.nlm.nih.gov/pubmed/26049047
  • Zwiększone odkładanie się amyloidu beta w naczyniach krwionośnych oraz membranie Brucha ma wpływ na perfuzję siatkówki oraz oczyszczanie zbędnych produktów z zewnętrznej powłoki siatkówki. Akumulacja amyloidu może zredukować liczbę fotoreceptorów o 30% oraz skrócić żywotność tych, które pozostały jeszcze 'żywe’. Sugeruje się także, że pokrycie amyloidem zewnętrznych segmentów siatkówki może mieć wpływ na funkcje widzenia w AMD. 253)ncbi.nlm.nih.gov/pubmed/20957206
  • Możliwe, że PDGF-B (płytkopochodny czynnik wzrostu B) ,który jest na wyższym poziomie niż u ludzi z retinopatią cukrzycową jest zaagażowany w patogenezę mokrego AMD. 254)ncbi.nlm.nih.gov/pubmed/24334449
  • Osoby z problemami z nerkami(chroniczna choroba nerek) mają wyższe ryzyko AMD. 255)ncbi.nlm.nih.gov/pubmed/18216312256)sci-hub.tv/10.1038/ki.2013.491 Inne badanie potwierdza,że u mężczyzn stanowi to wyższe ryzyko natomiast u kobiet nie. 257)ncbi.nlm.nih.gov/pubmed/19437313
  • Terapia komórkami macierzystymi jest bardzo ryzykowna – przypadek kobiety z AMD która po 3 miesiącach od wstrzyknięcia tych bardzo nieprzewidywalnych i nie pewnych komórek doznała odklejenia się siatkówki w obydwu oczach. 258)ncbi.nlm.nih.gov/pubmed/28902341 Takich przypadków jest więcej np.ten przypadek mężczyzny z tym samym skutkiem ubocznym po terapi komórkami macierzystymi.259) ncbi.nlm.nih.gov/pubmed/27327294
  • Fagocytoza mikrogleju jest o 2.5x gorsza w starszym wieku niż młodszym,a proces ten oczyszcza przecież złogi amyloidu beta. Mutacja genu MerTK prowadzi np. do zaburzeń fagocytozy i degeneracji siatkówki prowadzącej do ślepoty stąd tez fagocytoza w siatkówce i jej homeostaza jest niezbedna do prawidłowego działania fotoreceptorów. Ponadto fagocytoza przekształca DHA do przeciwzapalnej molekuły neuroprotektyny D1(NPD1) co promuje przeżycie/ochronę komórek nabłonka pigmentu siatkówki ochraniając ten rejon oka przed stresem oksydacyjnym. 260)ncbi.nlm.nih.gov/pmc/articles/PMC3842398/ NPD1 aktywuje geny przeciwdziałające śmierci komórkowej. 261)ncbi.nlm.nih.gov/pmc/articles/PMC5535015/
  • Otyłość, syndrom metaboliczny, wysoki poziom glukozy, wysoki poziom trójglicerydów to pare z przyczyn postępu AMD do jego zaawansowanej formy. 262)ncbi.nlm.nih.gov/pubmed/25207946
  • Syntetyczne leki anty VEGF mogą powodować proteinurię, uszkadzać nerki czy też powodować nadciśnienie 263)ncbi.nlm.nih.gov/pubmed/25905984264)ncbi.nlm.nih.gov/pubmed/25905784
  • Jest to choroba przeważnie występująca u osób które nadużywały(lub nadużywają) alkoholu lub/i osób z cukrzycą lub/i osób starszych(co by sugerowało badziej problem z amyloidem beta) czy też i/lub palaczy. 265)ncbi.nlm.nih.gov/pubmed/24178404
  • Otwór plamki to jeden z bardzo poważnych skutków ubocznych syntetyków anty VEGF 266)ncbi.nlm.nih.gov/pubmed/28603410
  • W przypadku syndromu Charlesa Bonneta inhibitory pompy protonowej zwiększają ryzyko rozwinięcia się halucynacji. Zastanawiam się teraz czy patogeny, do których przerostu dochodzi podczas stosowania leków typu IPP mogą mieć wpływ na AMD. 267)ncbi.nlm.nih.gov/pubmed/28829845
  • Nadaktywny poziom NLRP3 występuje w patogenezie zaawansowanej formy AMD – atrofii geograficznej i mokrej formie AMD. Destabilizacja lizosomów w komórkach nabłonka pigmentu siatkówki powoduje aktywacje inflamasomów NLRP3 co może prowadzić do patologi AMD ze względu na pobudzenie cytokiny zapalnej IL-1beta. 268)ncbi.nlm.nih.gov/pubmed/23221073
  • Amyloid beta powoduje wydzielanie czynników zapalnych takich jak cytokina IL-8 oraz MMP-9 a metaloproteinaza ta, związana jest z zaburzenieniem integralności bariery siatkówka-krew. 269)ncbi.nlm.nih.gov/pubmed/23557734
  • Endotelina-1 to związek wazoaktywny wytwarzany przez komórki śródbłonka(jest to peptyd zweżający naczynia). Uszkodzone komórki śródbłonka uwalniają różne cząsteczki zwężające naczynia krwionośne w tym właśnie endotelinę(ET-1) co porwadzi do zaburzenia śródbłonka. Rozwija się wtedy miejscowe niedokrwienie siatkówki które sprzyja rozwojowi zwyrodnienia u osób z AMD. 270)ncbi.nlm.nih.gov/pubmed/25137915
  • Amyloid beta przyczynia się do zniszczenia połączeń ścisłych w komórkach nabłonka pigmentu siatkówki poprzez ścieżkę sygnałową RAGE/p38 MAPK. 271)ncbi.nlm.nih.gov/pubmed/26431165
  • Białko BMP6 reguluje poziomy żelaza w organizmie – również i w siatkówce. Zbadano to białko w komórkach nabłonka pigmentu siatkówki i wykazano, że jest obniżone na skutek stresu oksydacyjnego. Wstrzykując je u myszy nadmiernie pobudzono hepcydyne – hormon regulujący poziomy żelaza i zmieniono tym samym poziomy żelaza w siatkówce. Myszy beż białka BMP6 (-/-) akumulują żelazo w siatkówce co prowadzi do jej degeneracji. 272)ncbi.nlm.nih.gov/pubmed/21703414
  • Amyloid beta powoduje zaburzenia wewnątrzkomórkowego wapnia i promuje jego akumulację w mitochondriach co prowadzi do ich destabilizacji. Abeta powoduje strukturalne i funkcjonalne zniszczenia mitochondriów poprzez generowanie wolnych rodników, zaburza przez to funkcjonowanie neuronów.273)ncbi.nlm.nih.gov/pubmed/28806013

Jak wpływa nadmierny poziom wapnia w komórce(czyt.doprowadza do cytotoksyczności poprzez pobudzenie mediatorów stanu zapalnego)274)ncbi.nlm.nih.gov/pmc/articles/PMC5224557/

 

  • Lipofuscyna jest to substancja, która odkłada się w nabłonku pigmentu siatkówki i związana jest z patogenezą AMD(powoduje śmierć komórek pigmentu siatkówki) oraz powoduje nieprawidłowe zwijanie się białek.. Obniża ona poziomy enzymu lizosomalnego i zaburza autofagię która odpowiedzialna jest za usuwanie zniszczonych białek z komórek. 275)ncbi.nlm.nih.gov/pubmed/20515810276)sci-hub.hk/10.1111/j.1755-3768.2009.01840.x
  • Amyloid beta zaburza system tioredoksyny(jest to uklad białek chroniący komórki przed stresem oksydacyjnym, regulują one także apoptozę komórki oraz przeciwdziałają nowotworzeniu). 277)ncbi.nlm.nih.gov/pubmed/22564527 278)pbkom.eu/pl/content/tioredoksyna-i-reduktaza-tioredoksyny-w-patogenezie-wybranych-chorób-człowieka-część-ii
  • Amyloid beta(1-40) pobudza także cytokinę zapalną IL-33 która związana jest z patogenezą charakteryzowanej choroby. 279)ncbi.nlm.nih.gov/pubmed/21898270
  • Amyloid beta prowadzi do zakłocenia integralności połączeń ścisłych(białka które budują szczelne jelito czy też barierę krew móżg) oraz powoduje hiperwaskularyzację i neoangiogenezę(powoduje to redystrybucję połaczeń ścisłych). Naturalnie zaburzenia funkcjonowania połączeń ścisłych będą prowadzić do utraty szczelności bariery krew mózg oraz krew-siatkówka. 280)ncbi.nlm.nih.gov/pubmed/21909359
  • Wykazano, że w AMD są zaburzenia metylacji (hypometylacja) w genie receptora IL-17RC (receptor dla cytokiny IL-17A i IL-17F). Sugeruje się, że pacjenci z AMD mogą być bardziej podatni na stany zapalne związane z nadmierną aktywacją cytokiny zapalnej IL-17. To samo tyczy się genów glutation s transferazy (GSTM1 i GSTM5) , które w AMD odpowiadają za podatność na stres oksydacyjny. 281)ncbi.nlm.nih.gov/pmc/articles/PMC3664466/
  • Akumulacja A2E zwiększa aktywację mikrogleju oraz powoduje aktywację komplementu(układ dopełniacza). 282)ncbi.nlm.nih.gov/pmc/articles/PMC4696750/
  • Wstrzyknięcie amyloidu beta w obszar podsiatkówkowy wywołuje stan zapalny, zaburzenia czynników COX-2, syntazy glutaminy GS, zaburzenia kanałów potasowych, akwaporyny AQP-4(kanały wodne) w komórkach Mullera i akwaporyny AQP-1 w fotoreceptorach. 283)ncbi.nlm.nih.gov/pmc/articles/PMC4976396/
  • Amyloid beta jest w stanie pobudzić rekrutację makrofagów i formowanie się kompleksu ataku błony(MMC) w siatkówce 284)ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR99285)ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR100
  • Aktywację inflammasomu pobudza amyloid beta. 286)ncbi.nlm.nih.gov/pubmed/29329580
  • U osób z mokrą postacią AMD, składowe dopełniacza – C3a, C4a i C5a są podwyższone i mogą zwiększać ryzyko zwłóknienia podsiatkówkowego. 287)ncbi.nlm.nih.gov/pubmed/26884800
  • Spermidyna powoduje dysfunkcje komórek nabłonka pigmentu siatkówki i ich śmierć poprzedzoną degeneracją fotoreceptorów. Powoduje także rozszczelnienie bariery krew-siatkówka. 288)ncbi.nlm.nih.gov/pubmed/28367269
  • Składowa dopełniacza C5a promuje powstawanie limfocytów Th17 w tym i zwiększa produkcję IL-17. 289)ncbi.nlm.nih.gov/pmc/articles/PMC3154861/
  • Druzy to produkty metabolizmu tkanki ocznej, położone pomiedzy nabłonkiem pigmentu siatkówki a membraną Brucha. Rozróżnia się twarde, miękkie, kruche jak i zwapnione. Są także pseudodruzy które widoczne są pod niebieskim światłem. Wpływ na ich powstawanie oczywiście ma między innymi genetyka. Sugeruje się, że stan niedotlenienia naczyniówki powoduje powstawanie pseudodruz ale i również np. zmniejszanie się jej obwodu. Innym zjawiskiem które może doprowadzić do ich powstawania jest odkładanie się elementów układu dopełniacza w obszarze podsiatkówkowym. Twierdzi się także, że pojawienie się pseudodruz zbiega się z początkiem powstawania geograficznej atrofi. 290)sci-hub.hk/10.1136/bjophthalmol-2014-305339
  • Amyloid beta,poprzez wpływ na metaloproteinazę 9, zaburza funkcjonowanie białek połączeń ścisłych (okludyna-1 , ZO-1 oraz F-actin). Prowadzi do do chronicznego stanu zapalnego w siatkówce i do degneracji plamki żółtej. 291)ncbi.nlm.nih.gov/pubmed/23525277292)ncbi.nlm.nih.gov/pubmed/24709310
  • Anafilotoksyny C3a i C5a są chemoatraktantami dla makrofagów i innych komórek układu odpornościowego. Ponadto powodują wzrost wapnia we wnętrzu komórki co może przecież doprowadzić do jej śmierci,ale i również zwiększają poziomy cytokin prozapalnych i aktywują ścieżkę PI3k/Akt. 293)ncbi.nlm.nih.gov/pubmed/28663750
  • Poziomy cytokiny zapalnej IL-1beta są kosmiczne w przypadku mokrego typu (10x wyższe niż normalnie). 294)ncbi.nlm.nih.gov/pubmed/25978536
  • Transferyna nie przechodzi przez barierę krew-mózg. 295)Oxidation of iron is accomplished by the ferroxidases such as, ceruloplasmin (Osaki et al., 1966), hephaestin (Heph) (Vulpe et al., 1999), amyloid precursor protein (APP) (Duce et al., 2010) or zyklopen (Chen et al., 2010). Problemem jest jednak DMT1 (Divalent metal transporter-1) który najprawdopodobniej transportuje żelazo z i do mózgu(u myszy potwierdzono, że jego brak uszczupla poziomy żelaza w mózgu). Na dodatek występuje on w siatkówce oka. 296)ncbi.nlm.nih.gov/pmc/articles/PMC3695389/
  • Niedobory receptora metabolicznego SUCNR1 prowadzą do akumulacji utlenionego LDL, pogrubienia membrany brucha i akumulacji podsiatkówkowego mikrogleju. Problemy z tym receptorem mogą zatem prowadzić do suchej postaci AMD. 297)ncbi.nlm.nih.gov/pubmed/23833031
  • W tej chorobie dochodzi do zaburzeń przepływu krwi w tętnicach siatkówki. 298)ncbi.nlm.nih.gov/pubmed/24147793
  • Neutrofile wytwarzają elastazę i pobudzają metaloproteinazy. Tak samo robią to cytokiny IL-6 i IL8 jak i również wolne rodniki. 299)ncbi.nlm.nih.gov/pmc/articles/PMC4082166/
  • Bmp6 to receptory, które regulują hepcydynę (substancja która obniża poziomy żelaza jeśli są za wysokie lub też w odpowiedzi na infekcję). W AMD poziomy Bmp6 w komórkach nabłonka pigmentu siatkóki są obniżone co sugeruje brak homeostazy żelaza w tym rejonie i akumulacje tego metalu. Ponadto nadmiernie pobudzona cytokina IL-6 powoduje pobudzenie hepcydyny a stan niedotlenienia (hipoksja) może spowodować nadmierny transfer żelaza(pobór do siatkówki) poprzez DMT1 – międzykomórkowy transporter żelaza. To samo robi stres oksydacyjny – zwiększa transferynę – komórkowego importera żelaza. 300)ncbi.nlm.nih.gov/pmc/articles/PMC3695389/#B39

 

Zwyrodnienie plamki żółtej (AMD) a metale ciężkie

  • Wysokie poziomy ołowiu są związane z patologią AMD u kobiet (ale nie u mężczyzn) 301)ncbi.nlm.nih.gov/pubmed/26252225 Inne badanie potwierdziło, że  w siatkówce oka gromadzi się nadmiar ołowiu. Pierwsze co bym podejrzewał w tym przypadku to woda w domu.  Należy zaaznaczyć, że ołów przyczynia się nie tylko do stanów zapalnych ale i również Ołów prowadzi do rozerwania bariery ochronnej krew-siatkówka i do siatkówkotoksyczności(retinotoksyczności) co w konsekwencji może doprowadzić do AMD 302)ncbi.nlm.nih.gov/pubmed/27663850303)ncbi.nlm.nih.gov/pubmed/19733830
  • U osób ze zwyrodnieniem plamki żółtej wykryto we włosach nadmierne poziomy metali ciężkich takich jak Arsen, kadm i ołów natomiast cynku i miedzi było mało. Także jest to nie pierwsze badanie sugerujące problem z metalami ciężkimi u osób z AMD – jest to zdecydowanie czynnik ryzyka przyczyniający siuę do zapadnięcia na tą chorobę. 304)ncbi.nlm.nih.gov/pubmed/16473343
  • Osoby z AMD mają wyższe poziomy kadmu niż zdrowa populacja. Badania potwierdzają jego związek z AMD. 305)ncbi.nlm.nih.gov/pubmed/25388812306)ncbi.nlm.nih.gov/pubmed/25125608307)ncbi.nlm.nih.gov/pubmed/17967453308)ncbi.nlm.nih.gov/pubmed/17631267309)ncbi.nlm.nih.gov/pubmed/19254715
  • U mężczyzn z AMD występują wysokie poziomy kadmu w siatkówce (u kobiet nie). 310)ncbi.nlm.nih.gov/pubmed/19254715

 

 

Zwyrodnienie plamki żółtej (AMD) a palenie papierosów

  • Dym papierosowy i nikotyna przyczynia się do stanów zapalnych i generują białka dopełniacza C3a C3b (czyli odpowiedź układu immunologicznego). 311)ncbi.nlm.nih.gov/pubmed/24440594
  • Palenie zmniejsza poziomy karoteinoidów we krwii. 312)Woodside JV, Young IS, Gilchrist SE, Vioque J, Chakravarthy U, de Jong PT, et al. Factors associated with serum/plasma concentrations of vitamins A, C, E and carotenoids in older people throughout Europe: the EUREYE study. Eur J Nutr 2013;52:1493–501.313)Snodderly DM. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 1995;62:1448S–61S.
  • Palenie i wysokotłuszczowa dieta prowadzi do geograficznej atrofi poprzez obniżenie aktywności Nrf2 oraz ścieżki sygnałowej Wnt. 314)ncbi.nlm.nih.gov/pubmed/29186981
  • Zwiększa ryzyko zachorowania na AMD 315)ncbi.nlm.nih.gov/pubmed/28292774 o około 2x. 316)ncbi.nlm.nih.gov/pubmed/15834082
  • Palenie i intensywne spożywanie alkoholu(w sensie częste i gęste – zwłaszcza piwa) jest związane ze zwiększonym ryzykiem zachorowania na AMD. 317)ncbi.nlm.nih.gov/pubmed/16386980 Inne badanie sugeruje,że pow.3drinków dziennie zwiększa ryzyko zachorowania. 318)ncbi.nlm.nih.gov/pubmed/18242575
  • Dym papierosowy powoduje stres retikulum endoplazmatycznego, akumulację lipidów i stres oksydacyjny co wpływa na patogenezę AMD 319)ncbi.nlm.nih.gov/pubmed/24711457
  • Nikotyna ma działanie proangiogenne poprzez oddziaływanie na receptory nikotynowe acetylcholinowe. 320)ncbi.nlm.nih.gov/pubmed/22300034
  • Myszy, które były wystawione na ekspozycję dymu papierosowego, wykazywały w obrębie oczu zwiększony poziom stresu oksydacyjnego oraz degenerację membrany Brucha jak i komórek nabłonka pigmentu siatkówki. 321)ncbi.nlm.nih.gov/pubmed/18769672
  • Jedną z możliwych dróg działania nikotyny (negatywnie w AMD) jest jej oddziaływanie na receptory nikotynowe które aktywują czynnik VEGF a redukują PEDF. 322)ncbi.nlm.nih.gov/pubmed/21330654
  • Nikotyna zwiększa wielkość i podatność na neowaskularyzację naczyniówki. Czynnik VEGF jest o tyle dobry, że hamuje aktywność metaloproteinazy 2 – nikotyna odwraca ten proces potęgując stany zapalne które wywołuje metaloproteinaza 2. 323)ncbi.nlm.nih.gov/pubmed/14691189
  • Nikotyna/tytoń stymuluje angiogenezę poprzez receptor nAChR(jest to acetylocholinowy receptor nikotynowy). 324)ncbi.nlm.nih.gov/pubmed/22796717

 

 

Zwyrodnienie plamki żółtej (AMD) – co się dzieje w tej chorobie?

  • MMP-9(metaloproteinaza 9 – jeden z czynników stanu zapalnego) jest podwyższona w przypadku AMD jak i neowaslukaryzacji plamki żółtej 325)ncbi.nlm.nih.gov/pubmed/18597988
  • Sugeruje się, aby zainteresować się utlenianiem glutationu który może być istotnym czynnikiem w w/w chorobie. 326)ncbi.nlm.nih.gov/pubmed/9586798
  • W suchej odmianie AMD zarówno ostrość widzenia jak i rozróżnianie kolorów się zmniejsza. 327)sci-hub.hk/10.3109/02713683.2014.925933

328)ncbi.nlm.nih.gov/pmc/articles/PMC4983667/

  • Osoby z AMD mają wyższe poziomy ferrytyny niż osoby zdrowe 329)ncbi.nlm.nih.gov/pmc/articles/PMC4838228/
  • Produkty glikacji AGE są komponentem druz i akumulują się w membranie Brucha. Ponadto stymulują komórki nabłonka pigmentu siatkówki do wytwarzania czynników zapalnych. Przeciwwirusowe białko RSAD2 jest także zlikalizowane w druzach i zewnętrznej części siatkówki,prowadząc do stanów zapalnych, akumulacji lipidów i arteriosklerozy (Ciekawe dlaczego jest tam aktywne – może ze względu na jakąś potencjalną aktywną infekcję wirusową?tak tylko retorycznie teraz teoryzuje). Ponadto AGE pobudzają wytwarzanie VEGF. 330)ncbi.nlm.nih.gov/pmc/articles/PMC4152952/
  • Jednym z podstawowych problemów w AMD jest migracja komórek nabłonka barwnikowego siatkówki. 331)ncbi.nlm.nih.gov/pubmed/26427479
  • Gen CYP27A1 konwerstuje 25OH D3 do jej aktywnej formy 1.25OH. D3 posiada działanie przeciwangiogenne lecz światło UV posiada działanie proangiogenne. Komórki nabłonka pigmentu siatkówki po ekpozycji na promienie UVA posiadają zwiększone poziomy COX-2, która to powoduje neowaskularyzację naczyniówki. Z kolei UVB zwiększa angiogenezę, czynnik VEGF(co jest logiczne), metaloproteinazę 2 i 3. 332)ncbi.nlm.nih.gov/pubmed/19119326/333)ncbi.nlm.nih.gov/pubmed/12432544/ 334)ncbi.nlm.nih.gov/pubmed/16317135/
  • Siatkówka potrzebuje endogennego cholesterolu. Akumuluje się tam 7-dehydrocholesterol(w związku z zahamowaniem redukcji 7-dehydrocholesterolu) który powoduje oksydację steroli do różnych metabolitów – powoduje to na dłuższą metę degenerację tej części oka. 335)(Fliesler, 2010b; Fliesler and Bretillon, 2010 (Xu et al., 2011; Xu et al., 2012
  • Leukocyty promują uszkodzenia komórek nabłonka i moga przenikać przez siatkówkę uszkadzając plamkę żółtą. Ich podwyższona liczba koreluje z obecnością druz miękkich oraz neowaskularyzacji naczyniówki. Monocyty z kolei poprzez migrację z krwiobiegu do przestrzeni podśródbłonkowej zamieniają się w makrofagi które docierają do uszkodzonych czy też zakażonych tkanek. Lokalnie produkowane białko MCP-1(CCL2) jest kluczową chemokiną regulującą migrację i infiltrację monocytów. Makrofagi powodują stan zapalny w membranie Brucha oraz są znajdowane w nadmiarze w tkance oka w AMD. Makrofagi pełnią podwójną rolę w przebiegu tej choroby – z jednej strony utrzymują balans produktów niepotrzebnych./śmieciowych w membranie Brucha i je po prostu usuwają. Z drugiej strony podtrzymują stan zapalny w AMD i promują rozwój tej choroby do jego zaawansowanej postaci. (wszystko to ze względu na 2 typy makrofagów – prozapalnych i naprawczych tzw. makrofagów M1 i M2). Makrofagi typu M2 pełnią funkcje antyoksydacyjne, przeciwzapalne. Pochłaniają końcowe produkcji glikacji AGE, kompleksy dopełniacza, utlenione membrany i martwe komórki hamując produkcje cytokin zapalnych. Brak ich rekrutacji powoduje zwiększoną ekspozycję komórek nabłonka pigmentu siaktówki na produkty AGE, co może stymulować te komórki do wytwarzania VEGF. W Późnej fazie makrofagi M2 pełnią funkcję proangiogenną i powodują neowaskularyzację naczyniówki (wytwarzają VEGF i inne czynniki wzrostu). 336)ncbi.nlm.nih.gov/pmc/articles/PMC4152952/
  • Układ dopełniacza to bardzo szybka odpowiedz układu odpornościowego przeciwko zmianom w tym układzie. Jego celem jest utrzymanie homeostazy w organizmie. Jego pobudzenie promuje usuwanie złogów, kompleksów immunologicznych i komórek które poddane zostały apoptozie(śmierci). Niestety może także przyczyniać się do degeneracji jeśli jest nadmiernie pobudzony(i zbyt długo). Tyczy się to także siatkówki oka. 337)ncbi.nlm.nih.gov/pubmed/25276841/ . W jednym z badań dostarczono do komórek nabłonka pigmentu siatkówki adenowirusa z komponentem C3 układu dopełniacza – wywołało to wiele problemów które występują w AMD. Ponadto zidentyfikowano komórki mikrogleju które odpowiedzialne są za syntezę i odkładanie się C3 w zewnętrznej warstwie siatkówki. Na dodatek akumulacja A2E (element lipofuscyny) która akumuluje się w mikrogleju, obecny jest w zewnętrznej części siatkówki i to też wspiera aktywację układu dopełniacza. 338)ncbi.nlm.nih.gov/pubmed/23608111/ 339)ncbi.nlm.nih.gov/pubmed/21357400/340)ncbi.nlm.nih.gov/pubmed/24036949/341)ncbi.nlm.nih.gov/pubmed/25034031/342)ncbi.nlm.nih.gov/pubmed/21571681/343)ncbi.nlm.nih.gov/pubmed/24705166/344)ncbi.nlm.nih.gov/pubmed/22819137/ 345)ncbi.nlm.nih.gov/pmc/articles/PMC4385698/
  • Stan niedotlenienia(hipoksji) w AMD powstaje poprzez odkładanie się druz w membranie Brucha. Powoduje to aktywację czynnika VEGF w komórkach nabłonka pigmentu siatkówki. 346)ncbi.nlm.nih.gov/pubmed/20951826/
  • Cytokina zapalna IL-18 powoduje apoptozę komórek barwnikowych nabłonka siatkówki oraz jest na wyższym poziomie(u osób chorujących w porównaniu do zdrowych). Zwiększa ona aktywność kaspazy-3 (powoduje śmierć komórkową) oraz zaburza ZO-1(zonula occludens-1) – białko integralności bariery krew-siatkówka. Ma ona wpływ na suchą, ale nie mokrą postać AMD. 347)ncbi.nlm.nih.gov/pubmed/25237159
  • W soczewce oka osób z AMD można znaleźć wirusy CMV lub HSV oraz obniżone cytokiny interferon gamma i TNF alfa oraz podwyższony interferon alfa co oznacza aktywną infekcję wirusową i walkę układu z nią. 348)ncbi.nlm.nih.gov/pubmed/18488471
  • W Alzheimerze problemem jest niski poziom dysmutazy nadlenkowej SOD1(enzym antyoksydacyjny, który powoduje oligomeryzację amyloidu beta) – wcale bym się nie zdziwił, jeśli w AMD byłby to też ten sam problem…349) ncbi.nlm.nih.gov/pubmed/22072713. Inne badanie potwierdza moje rozmyślania(niski poziom SOD w AMD). 350)ncbi.nlm.nih.gov/pubmed/21789374
  • Aktywność komórek CD35 jest podwyższona w monocytach,limfocytach i granulocytach osób z AMD. 351)ncbi.nlm.nih.gov/pubmed/21669404
  • Diagnostyka mitochondriów w suchej formie AMD wykazuje, że problemem jest dysfunkcja mitochondriów komórkowych. 352)ncbi.nlm.nih.gov/pubmed/22822904
  • W oczach osób z ASD występują niższe poziomy neuronowej syntazy tlenku azotu (nNOS) oraz eNOS co może mieć związek z wazokonstrykcją (zwężeniem naczyń krwionośnych) i zmianami hemodynamicznymi. 353)ncbi.nlm.nih.gov/pubmed/19836390
  • Metaloproteinazy 1 i 3 (MMP-1 i 3) są wzniecane w nabłonku pigmentu siatkówki przez stres oksydacyjny. Ich nadmierna aktywność prowadzi do degradacji kolagenu typu 1 który przecież jest składnikiem np.rogówki oka. 354)ncbi.nlm.nih.gov/pubmed/19516002
  • COX-2 jest wysoko podniesioną substancją zapalną zarówno w plamce zółtej jak i nabłonku fibroblastów. COX-2 tak dla przypomnienia jest to substancja zapalna ,która szybko jest tłumiona przez takie syntetyki jak np.ibuprofen czy aspiryna. 355)ncbi.nlm.nih.gov/pubmed/18827739
  • Poziomy enzymu antyoksydacyjnego SOD1 są wyższe u osób z AMD co oznacza przewlekły stres oksydacyjny. 356)ncbi.nlm.nih.gov/pubmed/24363822
  • W ok.40% przypadków ludzi z AMD suchym znajdowany jest amyloid beta(w oczach) a w przypadku mokrego AMD – w 80% przypadków. W połowie przypadków nadmiary amyloidu są znajdowane zarówno w mózgu jak i w oczach. 357)ncbi.nlm.nih.gov/pubmed/26080579
  • W siatkówce oka(wewnętrznej części) ludzi z AMD znaleziono komórki CD163+ co potwierdza kluczową rolę makrofagów w patogenezie(stan zapalny) i postępie choroby. 358)ncbi.nlm.nih.gov/pubmed/26148801
  • Akumulacja żelaza w siatkówce oka to jeden z kolejnych problemów w AMD. 359)ncbi.nlm.nih.gov/pubmed/25163348
  • Inflammasomy NLRP3 to kompleks białek składający się z NLRP3, PYCARD i kaspazy-1 który aktywowany może być przez mikroorganizmy. Zamieszany jest w patogeneze nie tylko AMD, ale i również Alzheimera i miażdzycy. Powoduje on aktywację stanu zapalnego (IL-1beta) w komórkach śródbłonka barwnika siatkówki. 360)ncbi.nlm.nih.gov/pubmed/22067048/
  • Membrana Brucha jest to membrana, przez którą do siatkówki dochodzą tlen oraz składniki odżywcze – to właśnie tam akumuluje się żelazo przyczyniając się do zwyrodnienia plamki żółtej. 361)ncbi.nlm.nih.gov/pubmed/26026877 362)ncbi.nlm.nih.gov/pubmed/19673453
  • W tej chorobie kolejnym problemem jest gromadzenie się lipofuscyny czy też druz/złogów pomiędzy komórkami nabłonka pigmentu siatkówki a membraną Brucha 363)sci-hub.tv/10.1016/j.arr.2009.06.002
  • Amyloid beta zwiększa aktywność komponentu B układu dopełniacza w komórkach nabłonka pigmentu siatkówki. 364)ncbi.nlm.nih.gov/pubmed/19277984
  • Sugeruje się, że za neowaskularyzację odpowiada także ADAM9. 365)ncbi.nlm.nih.gov/pmc/articles/PMC2682031/
  • H2O2 w siatkówce oka stymuluje produkcję zapalnej cytokiny IL-6. 366)ncbi.nlm.nih.gov/pubmed/21031020
  • Siatkówka jest najbardziej aktywną tkanką w organizmie człowieka, a fotoreceptory zużywają tlen intensywniej niż neurony w mózgu. 367)ncbi.nlm.nih.gov/pmc/articles/PMC2919496/
  • Tenasciny to składniki macierzy pozakomórkowej które mają wpływ na rozwój ośrodkowego układu nerwowego. Odgrywają rolę we wzroście aksonów, przewodnictwie czy synaptogenezie. Ich prawidłowe działanie jest ważne w czasie wzrostu organizmu czy też jego regeneracji i stanach patologicznych.
    Tenascyna-C (Tnc) to modulator układu odpornościowego i procesów zapalnych. Tnc występuje w błonach neowaskularyzacyjnych naczyniówki oka osób z AMD, w obszarze blizn można też znaleźć wysoki poziom Tnc. Sugeruje się, że Tnc może powodować brak przylegania komórek nabłonka pigmentu w uszkodzonej już membranie Brucha. Potwierdziło to inne badanie368)(Afshari et al.2010). 369)ncbi.nlm.nih.gov/pmc/articles/PMC5660115/
  • Czynnik H(składowa dopełniacza – jest to czynnik regulacyjny układu dopełniacza) jest zamieszany w patologie AMD. Cytokina przeciwzapalna IL-27 zwiększa poziomy CFH(czynnik H) w komórkach nabłonka pigmentu siatkówki oraz zwiększa poziomy czynnika regulującego interferon (IRF-1 i IRF-8). 370)ncbi.nlm.nih.gov/pubmed/23029250
  • Autofagia jest aktywowana podczas stresu oksydacyjnego, stanu zapalnego, w czasie niedotlenienia organizmu czy też w przypadku nieprawidłowo zwijających się białek. 371)sci-hub.hk/10.1111/j.1755-3768.2009.01840.x

Przekrój plamki żółtej 372)ncbi.nlm.nih.gov/pmc/articles/PMC4983667/

  • Sugeruje się, że druzy mogą zaburzać autofagię. 373)sci-hub.hk/10.1111/j.1755-3768.2009.01840.x
  • Druzy składają się z żelaza,cynku,miedzi, proteaz, chilonesteraz, lipidów, polisacharydów i innych subtancji. 374)ncbi.nlm.nih.gov/pmc/articles/PMC3939747/
  • Poziomy ceruloplazminy i transferyny są o 2-12x wyższe, tak samo jak i poziomy ferrytyny(1.5-2x wyższe) – sugeruje to zaburzenia homeostazy żelaza. 375)ncbi.nlm.nih.gov/pubmed/18997094
  • Nadmiar żelaza aktywuje ścieżkę NLRP3 inflammasome. 376)ncbi.nlm.nih.gov/pubmed/26074074
  • Komórki CD14, wapń (Ca(2+) oraz wolne rodniki zaangażowane są w śmierć komórek nabłonka pigmentu siatkówki spowodowaną przez monocyty. 377)ncbi.nlm.nih.gov/pubmed/21447688
  • Zwiększone poziomy cytokin zapalnych IL-22 i IL-17 to jeden z problemów w tej chorobie. Dowiedziono, że jedną z możliwości czemu tak sie dzieje jest komponent dopełniacza C5a(podniesiony). 378)ncbi.nlm.nih.gov/pubmed/21762495
  • Powstawanie druz związane jest z neowaskularyzacją naczyniówki i atrofią geograficzną i obserwowane są w mokrej postaci AMD. 379)sci-hub.hk/10.3109/08820538.2011.588666
  • Komponent D to element ścieżki dopełniacza (ścieżki alternatywnej którą też reguluje) i jest zaangażowany w patogeneze AMD(jest on podwyższony w tej chorobie). 380)ncbi.nlm.nih.gov/pubmed/22003108
  • NFkappaBeta pobudza mobilizację wewnątrzkomórkowego wapnia co prowadzi do pobudzenia cytokiny zapalnej IL-8 w komórkach nabłonka pigmentu siatkówki oka. 381)ncbi.nlm.nih.gov/pubmed/25593029
  • 7-ketocholesterol akumuluje się w tkance ocznej(siatkówce) i jest obecny w znacznych ilościach w przypadku występowania druz. 382)ncbi.nlm.nih.gov/pubmed/25261634 Powoduje on stany zapalne i ma działanie angiogeniczne 383)ncbi.nlm.nih.gov/pubmed/23409131
  • Aktywność receptorów chemokiny CX3CR1 na komórkach CD8+ jest obniżona jak i także receptora CCR2 na komórkach CD8+. 384)ncbi.nlm.nih.gov/pubmed/25503251
  • TAK1 to kinaza aktywowana cytokiną TGF Beta. Badania pokazują, że w komórkach nabłonka pigmentu siatkówki jest ona aktywna(i na wysokim poziomie) jednak zmienia się pod wpływem stresu oksydacyjnego. Nieprawidłowa aktywność TAK powoduje wydzielanie czynników promujących przerost komórek nabłonka pigmentu siatkówki i zmiany zwłóknieniowe w sąsiednik komórkach. 385)ncbi.nlm.nih.gov/pubmed/25118260
  • Poziomy czynnika aktywującego płytki (PAF) są niższe u osób z AMD niż u osób zdrowych. 386)ncbi.nlm.nih.gov/pubmed/25077601
  • Wykazano, że w mokrej postaci AMD dochodzi do zaburzeń układu dopełniacza (nadmiernie pobudzone są elementy regulatora FH i FI oraz zwiększone produkty aktywacji C3a i Ba w cieczy wodnistej oka. 387)ncbi.nlm.nih.gov/pubmed/28128795
  • Występują niskie poziomy reduktazy i peroksydazy glutationu. 388)ncbi.nlm.nih.gov/pubmed/7803358
  • U osób z druzami można dostrzec spadek przepływu/krążenia krwi w naczyniówce oraz wzrost nasilenia cech AMD związanych z ryzykiem rozwoju neowaskularyzacji naczyniówkowej. 389)ncbi.nlm.nih.gov/pubmed/15728562
  • Tryptaza wydzielana podczas degranulacji komórek tucznych w naczyniówce przyczepia się do membrany Brucha w atrofi geograficznej. Aktywuje ona metaloproteinazy, które degradują zewnątrzkomórkowe macierze i podstawowe komponenty membrany Brucha. 390)ncbi.nlm.nih.gov/pubmed/29164232
  • U osób z AMD immunoglobulina A jest nadmiernie podniesiona oraz podniesione plazmoblasty(komórki wytwarzające przeciwciała – immunoglobuliny). 391)ncbi.nlm.nih.gov/pubmed/26827241
  • Cytokina zapalna TNF alfa niszczy funkcje barierowe(zonulinę occludens 1) w komórkach nabłonka pigmentu siatkówki. 392)ncbi.nlm.nih.gov/pubmed/23454586
  • Stan zapalny w komórkach nabłonka pigmentu siatkówki wzburza chemokiny CCL-5 i CCL-7 w tym rejonie. 393)ncbi.nlm.nih.gov/pubmed/26618046
  • U osób w membranie naczyniówki neowaskularyzacyjnej obserwuje się zwiększoną ilość komórek macierzystych CD34+. 394)ncbi.nlm.nih.gov/pubmed/28777387
  • Mikroglej może wytwarzać/pobudzać MCP-1, TNF alfa i IL-1beta co powoduje degenerację neuronów. Substancja ta zawiera lipofuscynę, zbiera się pod siatkówką a sam mikroglej przyciąga dodatkowo makrofagi w miejscu gdzie się kumuluje. 395)sci-hub.hk/10.1111/j.1444-0938.2012.00741.x
  • Płytkopochodny czynnik wzrostu (PDGF)-AA oraz cytokina zapalna IL-6 mają wpływ na grubość siatkówki 396)ncbi.nlm.nih.gov/pubmed/27537264
  • W AMD dochodzi do zaburzenia transportera aminokwasowego (EAAT5) tkance patologicznej oka. 397)ncbi.nlm.nih.gov/pubmed/27984169
  • Same makrofagi w mokrej postaci tej choroby mogą działać proangiogennie 398)ncbi.nlm.nih.gov/pubmed/28039766
  • U osób z AMD dochodzi do spłycenia kompleksu komórek zwojowych co doprowadza do utraty neuronów siatkówki i spłycenia tego elementu oka. 399)ncbi.nlm.nih.gov/pubmed/28624323
  • Komórki CD59 są na niskim poziomie w komórkach nabłonka pigmentu siatkówki. Prawdopdoobnie powodują one zaburzoną aktywację kompleksu atakującego błonę(MAC) w AMD. 400)sci-hub.hk/10.1016/j.ejpn.2015.07.001
  • Występuje nadmiernie podniesiona apolipoproteina E ,z kolei leptyna i czynnik H układu dopełniacza były obniżone. (badanie na Pakistańczykach) 401)ncbi.nlm.nih.gov/pubmed/28585581
  • Miękkie druzy zawierają w sobie białko CRP, CEP, immunoglobulinę G, fibrynogen, amyloid P, apolipoproteiny, komponenty białek układu dopełniacza C3a i C5a, C5, C5b-9, czynnik H-CFH, klusterynę, vitronektynę, CD46. 402)ncbi.nlm.nih.gov/pmc/articles/PMC4152952/
  • Klasyczny układ dopełniacza pobudzany jest przez kompleks przeciwciała-antygen, alternatywna ścieżka przez membrany patogenów lub komórki gospodarza, ścieżka lektynowa poprzez przyczepianie się lektyn w krwi do polisacharydów na powierzchni bakterii. Ścieżka alternatywna i lektynowa tak naprawdę nie potrzebują typowych patogenów do apktywacji i mogą być pobudzone bez obecności przeciwciał. Pobudzenie tych ścieżek prowadzi do stanu zapalnego i generacji kompleksu ataku błony(MAC), przyciąga komórki stanu zapalnego do miejsca zniszczeń i zwiększa przesiąkliwość kapilar. Pobudzony układ dopełniacza jest dowodem na silną dysregulację układu odpornościowego w membranie Brucha i obecny jest w obu formach AMD. 403)ncbi.nlm.nih.gov/pmc/articles/PMC4152952/
  • 90% osób ma suchą odmianę AMD, natomiast 10% – mokrą.
  • Układ dopełniacza aktywuje komórkowy układ immunologiczny, lizę komórek oraz oczyszczenie z patologicznych kompleksów immunologicznych. Klasyczna ścieżka układu dopełniacza nie ma wpływu w AMD, natomiast alternatywna i lektynowa jest zaangażowana w etiologię AMD. 404)ncbi.nlm.nih.gov/pmc/articles/PMC4122127/
  • Aktywacja elementu dopełniacza – C3 następuje poprzez aktywację mikrogleju i monocytów 405)ncbi.nlm.nih.gov/pubmed/24705166
  • Lipoproteiny niestety odkładają się i akumulują w membranie Brucha. 406)ncbi.nlm.nih.gov/pmc/articles/PMC4058366/
  • Występują zaburzenia ścieżki sygnałowej metaloproteinaz 407)ncbi.nlm.nih.gov/pubmed/28197357
  • Fenylbutyl fosfonylacetat (PBA) to inhibitor stresu oksydacyjnego w retikulum endoplazmatycznym. Amyloid beta powoduje pobudzenie czynnika VEGF oraz kaspazy 4 i 12 jednak PBA normalnie je tłumi – w AMD,bazując na innych doniesieniach o nadmiernym stresie retikulum endokplazmatycznym, można stwierdzić, że system ten nie działa z jakiegoś powodu prawidłowo. 408)ncbi.nlm.nih.gov/pubmed/26560903
  • Siatkówka zawiera w sobie telomerazę – enzym który podtrzymuje długość telomerów – stres oksydacyjny hamuje syntezę telomerazy
  • U osób z AMD podniesiona jest nie tylko homocysteina i obniżony glutation ale i również obniżony poziom miedzi. 409)ncbi.nlm.nih.gov/pubmed/27748300
  • Odkładanie się lipidów w membranie Brucha prowadzi do zwiększonej sztywności w tej tkance, zwiększonego oporu postkapilarnego naczyniówki, zwiększonego ciśnienia hydrostatycznego i zmniejszonego przepływu krwii w naczyniówce. Zmniejszony przepływ doprowadza wtedy do słabego usuwania złogów lipoproteinowych i ich akumulacji w komórkach nabłonka pigmentu siatkówki oraz membranie Brucha – ostatecznie doprowadza to do stanu zapalnego którego końcowym etapem jest geograficzna atrofia i neowaskularyzacja naczyniówki. 410)sci-hub.hk/10.1097/IIO.0b013e3180377936
  • W przypadku podniesionych komórek CD45 rozróżnienie mikrogleju od makrofagów jest trudne. 411)ncbi.nlm.nih.gov/pubmed/21673720/
  • PON to paraoksonaza – enzym cholesterolu HDL który usuwa utleniony LDL (oxLDL). Stwierdza się zaburzenia tego enzymu oraz zaburzenia lipidów w AMD. 412)ncbi.nlm.nih.gov/pubmed/27693409
  • Długość telomerów leukocytów ma związek z patologią AMD (zwłaszcza w przypadku geograficznej atrofii). Zdectydowanie warto je wydłużać lub hamować ich skracanie. 413)ncbi.nlm.nih.gov/pubmed/26049047
  • Makrofagi naczyniówkowe u osób z AMD wytwarzają iNO (indukowany tlenek azotu) i znajdowane są tylko w membranie Brucha w początkowym stadium osób AMD z miękkimi druzami czy też u osób z neowaskularyzacją naczyniówki. Makrofagi naczyniówkowe u zdrowych osób nie wytwarzają iNO. 414)ncbi.nlm.nih.gov/pubmed/19965817/
  • Polaryzacja makrofagów z M1 do M2 może zachodzić po prostu z wiekiem i z czasem trwania AMD 415)ncbi.nlm.nih.gov/pubmed/21884302/416)ncbi.nlm.nih.gov/pubmed/22175541/
  • W tym badaniu wykazano i pokazano zdjęcie jak wygląda geograficzna atrofia w której dominują makrofagi typu M1 oraz zdjęcie mokrego AMD w którym dominują makrofagi typu M2. 417)ncbi.nlm.nih.gov/pmc/articles/PMC4153378/
  • Komponent C3 wytwarzany jest lokalnie w siatkówce przez mikroglej/makrofagi prowadząc do degeneracji siatkówki. 418)ncbi.nlm.nih.gov/pubmed/28605809
  • U osób z AMD stwierdza się zaburzenia mikrobiomu jelit. Oscillibacter to bakteria, która występuje u tej grupy osób w nadmiarze – powoduje ona obniżenie aktywności Zonuliny occludens (ZO-1) – białka wchodzącego w skład połączeń ścisłych uszczelniających śluzówkę jelita cienkiego. Zaburzenia funkcjonowania ZO-1(zonuliny occludens-1) powodują z kolei dysfunkcje nabłonka pigmentu siatkówki oka. 419)ncbi.nlm.nih.gov/pubmed/21209887
  • Eubacterium ventrisum – także podwyższona populacja – związana z wytwarzaniem cytokin IL-6 i IL-8. Zaburzony jest także stosunek bakteri bacteroides do firmicutes – a to też jest marker nieszczelności jelit. 420)ncbi.nlm.nih.gov/pmc/articles/PMC5240106. Inne badanie stwierdza, że poprzez nieszczelną śluzówkę jelit przedostają się różne molekuły w tym i polisacharyd LPS. Może to spowodować chroniczny stan zapalny z aktywacją mikrogleju i makrofagów i to także w tkance ocznej. 421)ncbi.nlm.nih.gov/pmc/articles/PMC5167134/
  • Lipufuscyna to miks białek i utlenionych tłuszczy – jej akumulacja jest jednym z głównych problemów w AMD i degeneracji fotoreceptorów. Główna lipofuscyna to A2E. 422)sci-hub.hk/10.1152/physiol.00021.2005
  • Komponent C3a i MAC mogą także aktywować inflamasomy. 423)ncbi.nlm.nih.gov/pubmed/23878142/ 424)ncbi.nlm.nih.gov/pubmed/23817414/425)ncbi.nlm.nih.gov/pubmed/23613465/Tak samo jak amyloid beta. 426)ncbi.nlm.nih.gov/pubmed/23462752/
  • Akumulacja lipofuscyny aktywuje inflammasomy 427)ncbi.nlm.nih.gov/pubmed/23221073/ 428)ncbi.nlm.nih.gov/pubmed/23840644/429)ncbi.nlm.nih.gov/pubmed/12483320/
  • W AMD druzy kumulują sie pomiędzy nabłonkiem pigmentu siatkówku a membraną Brucha z kolei amyloid beta w siatkówkce oraz druzach. 430)sci-hub.hk/10.1007/s00018-016-2295-x
  • Transport amyloidu beta przez barierę krew mózg jest zaburzany przez eNOS i jego zahamowanie powoduje dysfunkcje waskularne i zaburzenia mikrocyrkulacji co promuje odkładanie się amyloidu beta. 431)Provias J, Jeynes B (2014) The role of the blood–brain barrier in the pathogenesis of senile plaques in Alzheimer’s disease. Int J Alzheimers Dis 2014:191863
  • Geny rytmu dobowego regulują czynnik VEGF tak samo jak i dopamina. Są one zaburzone w chorobach gdzie dochodzi do neowaskularyzacji w tym i w AMD gdzie dochodzi do zaburzenia w/w rytmu co prowadzi do zaburzeń w produkcji dopaminy i melatoniny. 432)ncbi.nlm.nih.gov/pmc/articles/PMC4738726/
  • 7Kch pobudza mikroglej i polaryzacje makrofagów do ich podtypu M1 poprzez aktywację NLRP3 inflamasomów. Mikroglej obniża wtedy aktywność czynnika NGF i zwiększa czynniki angiogenne co powoduje, że staje się bardziej neurotoksyczny. 433)ncbi.nlm.nih.gov/pubmed/25775051
  • Ekspozycja nabłonka pigmentu siatkówki oka na żelazo znacząco zmniejsza fagocytozę w tym rejonie która i tak już z wiekiem(i akumulacją żelaza) jest upośledzona. 434)ncbi.nlm.nih.gov/pubmed/6714331/435)ncbi.nlm.nih.gov/pubmed/19151392/
  • Angiopoetyna 2 (ANG2) ma działanie proangiogenne i w mokrej postaci AMD jest podwyższona. 436)ncbi.nlm.nih.gov/pubmed/28345626
  • Mikroglej także jest problemem w AMD – prawdopodobnie prowadzi on do zmiany komórek barwnikowych siatkówki. 437)ncbi.nlm.nih.gov/pubmed/19936204
  • Metaloproteina 2 (MMP-2) jest w normie w przypadku AMD, jednak MMP-9 jest podwyższone co wiąże się ze stanem zapalnym 438)ncbi.nlm.nih.gov/pubmed/17304258
  • Poziomy transferyny(transporter żelaza) są zwiększone w siatkówce oka ludzi z AMD(w porównaniu do ludzi zdrowych) co świadczy o zaburzonej homeostazie żelaza u w/w ludzi. 439)ncbi.nlm.nih.gov/pubmed/16639025
  • W tej chorobie niszczona jest melanina (barwnik siatkówki) 440)ncbi.nlm.nih.gov/pubmed/26878446
  • Osoby z mokrą postacią AMD śpią krócej niż osoby zdrowe. (6 godzin lub mniej) 441)ncbi.nlm.nih.gov/pubmed/26786476
  • Wczesna postać suchego AMD charakteryzuje się formowaniem duzd,które są złogami podsiatkówkowymi w plamce żóltej i mogą postępować do geograficznej atrofi. 442)ncbi.nlm.nih.gov/pubmed/25319011
  • 7-ketocholesterol(7KCh) aumuluje się w komórkach oka i jest obecny w wysokim stężeniu w druzach. Poziomy 7KCh w komórkach nerwowych siatkówki to od 8-20 pmol/nmol natomiast poziomy 7KCh w nabłonku komórek barwnikowych to ok.200-170000 pmol/nmol, a w druzach 200-2000. 443)ncbi.nlm.nih.gov/pubmed/25261634
  • W przypadku mokrej postaci bardzo często występuje podwyższony poziom homocysteiny i dimetyloargininy(ADMA) (może być ona odpowiedzialna za zmniejszoną aktywność eNOS co powoduje obniżone poziomy tlenku azotu a to może odgrywać rolę w patogenezie AMD). 444)ncbi.nlm.nih.gov/pubmed/25210424
  • Jako że w tej chorobie dochodzi do nadmiaru wolnych rodników, funkcjonowanie dysmutazy nadtlenkowej SOD czy katalazy które z nimi walczą jest obniżone – przez ten fakt dochodzi do śmierci komórek nabłonka barwnika siatkówki. 445)ncbi.nlm.nih.gov/pmc/articles/PMC3824279/
  • Występuje niski poziom glutation peroksydazy 446)ncbi.nlm.nih.gov/pubmed/25815109
  • W czasie hipoksji siatkówki dochodzi tam do zwiększonej aktywności transportera glukozy GLUT1 i o 1.7x zwiększonej produkcji kwasu mlekowego(stąd zapewne zmiana pH). 447)ncbi.nlm.nih.gov/pmc/articles/PMC3973437/
  • Interesujące, że u ludzi z AMD ilość etanu jest wyższa niż u osób zdrowych – świadczy to o nadmiernym stresie oksydacyjnym, ale i też o zaburzeniach flory bakteryjnej 448)ncbi.nlm.nih.gov/pubmed/21336004

 

 

Zwyrodnienie plamki żółtej i markery wykrywania tej choroby

  • Vinculin(winkulina?) możę być markerem z krwi potwierdzającym AMD. 449)ncbi.nlm.nih.gov/pubmed/25298412
  • Zbadano, że wyższe poziomy białka MCP-1 w cieczy wodnistej oka związane są z zaawansowaną postacią AMD a osoby takie mają wysokie poziomy cytokin zapalnych IL-12 i TNF alfa. sugeruje się, że podwyższone poziomy MCP-1 mogą być markerem fazy angiogennej(mokrej) AMD. 450)ncbi.nlm.nih.gov/pubmed/22172228
  • W wysiękowej postaci AMD zwiększone są poziomy IGFBP-2 i IGF-1(insulinowy czynnik wzrostu) i mogą być biomarkerami AMD. 451)ncbi.nlm.nih.gov/pubmed/24106111
  • N-carboxymethyllysine to końcowy produkt glikacji (AGE). Sugeruje się, że jako marker stresu oksydacyjnego może być biomarkerem w chorobach układu krązenia(w arteriosklerozie) jak i również w AMD. 452)ncbi.nlm.nih.gov/pubmed/27170482 453)ncbi.nlm.nih.gov/pubmed/25633305
  • Interesujące jest to,że u osób z AMD poziomy czynnika wzrostu nerwów w mózgu(BDNF) są wyższe niż u osób zdrowych – podejrzewałbym, że jest to naturalna reakcja obronna organizmu przed neurodegeneracją. 454)ncbi.nlm.nih.gov/pubmed/26558215
  • MCP-1(białko chemotaktyczne monocytów 1) jest podwyższone w przypadku wysiękowego AMD(tak samo jak VEGF naturalnie). 455)ncbi.nlm.nih.gov/pubmed/20937997
  • Poziomy markera stanu zapalnego CRP są wyższe u osób z AMD i zaćmą niż tylko z zaćmą lub tylko z AMD. 456)ncbi.nlm.nih.gov/pubmed/18050118
  • Niskie poziomy homcysteiny i zredukowanego glutationu to to co wyróżnia AMD wysiękowe 457)ncbi.nlm.nih.gov/pubmed/15803172
  • W przypadku mokrego AMD poziomy pentraxin3 (PTX3) oraz CRP są znacznie wyższe niż u osób zdrowych. 458)ncbi.nlm.nih.gov/pubmed/24654791
  • IP-10 i eotaksyna – mogą to być biomarkery AMD we wczesnym jego etapie. 459)ncbi.nlm.nih.gov/pubmed/20220052
  • F2 izoprostany to markery stresu oksydacyjnego. Ich wyższe stężenie w moczu wykrywane jest u osób z AMD(w populacji Chińskiej). 460)ncbi.nlm.nih.gov/pubmed/28492872
  • Membrana Brucha pogrubia się w związku z akumulacją lipidów i przez stan zapalny co przyczynia się do spowolenienia transportu składników odżywczych i transportu śmieci/zbędnych produków z okolicznych obszarów. 461)ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR35
  • Pod wpływem mikrogleju połączenia ściśłe są rozregulowane, zwiększone są poziomy molekuł adhezyjnych ICAM-1 VCAM-1(molekuły przylegania komórek odpornościowych), pobudza cytokiny zapalne IL-1beta, TNF alfa i iIL-6, czynnik VEGF oraz metaloproteinazy 1,2,9. 462)ncbi.nlm.nih.gov/pmc/articles/PMC4694044/463)ncbi.nlm.nih.gov/pmc/articles/PMC4694044/
  • Makrofagi M2 także mocno zwiększają poziomy fibroblastowego czynnika wzrostu bFGF, insulinowego czynnik wzrostu IGF1 PGF oraz MCP-1. 464)ncbi.nlm.nih.gov/pubmed/24634660/465)ncbi.nlm.nih.gov/pubmed/23145206/
  • Żelazo w komórkach nabłonka pigmentu siatkówki powoduje nadmierną aktywację komponentu układu dopełniacza C3 i jego odkładanie się. 466)ncbi.nlm.nih.gov/pubmed/25802332
  • PEDF to czynnik pochodzący z nabłonka błonnikowego(z ang.pigment epithelium derived factor). Odpowiedzialny jest za neuroprotekcję i ma właściwości antyangiogeniczne w przypadku plamki żółtej. Ma on także pływ na stres oksydacyjny i stan zapalny w komórkach nabłonka plamki żółtej. 467)ncbi.nlm.nih.gov/pubmed/29351407 PEDF występuje w ciele rzęskowym, rogówce, komórkach warstwy wewnętrznej siatkówki, komórkach warstwy zewnętrznej siatkówki. Sugeruje się jego protekcyjne działanie w SM,SLA i naturalnie AMD. 468)phmd.pl/api/files/view/2031.pdf. Ma działanie antyangiogenne i i jest obniżone u osób z mokrym typem AMD (z kolei czynnik VEGF jest podniesiony). Zaburzenia balansu między PEDF a VEGF przyczynia się do neowaskularyzacji naczyniówki. 469)sci-hub.hk/10.1016/j.trsl.2014.04.005470)ncbi.nlm.nih.gov/pubmed/26697494 U osób z suchą postacią AMD problemem jest spadek poziomu PEDF(czynnik pochodzący z nabłonka barwnikowego siatkówki) – jest to czynnik odpowiadający między innymi za przeżycie fotoreceptorów siatkówki oraz neuronów ośrodkowego i obwodowego układu nerwowego. Chroni także niedojrzałe neurony przed apoptoza(działa jako antagonista VEGF hamując tym samym tworzenie nowych naczyń). 471)phmd.pl/api/files/view/2031.pdf472)ncbi.nlm.nih.gov/pubmed/23346798
  • Komórki nabłonka pigmentu siatkówki, które poddane są ekspozycji amyloidowi beta wytwarzają nadmierne poziomy VEGF i obniżone poziomy PEDF(czynnik przeciwangiogenny). 473)ncbi.nlm.nih.gov/pmc/articles/PMC3939747/
  • Pobudzony układ dopełniacza może zmienić ekspresję metaloproteinazy 2 i 9 oraz ich aktywność oraz zaburzyć balans czynnika VEGF do PEDF powodując neowaskularyzację w AMD 474)ncbi.nlm.nih.gov/pmc/articles/PMC4091411/
  • Ciekawe badanie stwierdzające, że większość osób z AMD ma stany zapalne w jamie ustnej w sensie problemy z przyzębiem(w tym problemy z patologicznymi kieszonkami dziąsłowymi). 475)ncbi.nlm.nih.gov/pubmed/22783741
  • W AMD często występuje obrzęk plamki żółtej który leczony jest syntetykami. Naturalnie taki obrzęk może wystąpić przy współistniejącej cukrzycy także jest to moim zdaniem pierwsza rzecz jaką należałoby sprawdzić jeśli chodzi o diagnostykę AMD(w medycynie konwencjonalnej stosuje się do powstrzymania takiego obrzeku – laser czy też leki syntetyczne anty VEGF) 476)ncbi.nlm.nih.gov/pubmed/23713187

 

Zwyrodnienie plamki żółtej (AMD) a genetyka

  • Polimorfizm geu HTRA1 jest powiązany z występowaniem AMD. 477)ncbi.nlm.nih.gov/pubmhued/23623979
  • Allela A genu rs3764261 (CETP) to obniżone ryzyko (przynajmniej w populacji Chińskiej) 478)ncbi.nlm.nih.gov/pubmed/24498989
  • Palenie plus polimorfizmy genu ABCA4 2633C>A (CC+CA) , 5646G>A i 6389T>A zwiększają ryzyko AMD. 479)ncbi.nlm.nih.gov/pubmed/26261643
  • Polimorfizm CFH Y402H zwiększa podatność (przynajmniej w populacji Greckiej) 480)ncbi.nlm.nih.gov/pubmed/25811666
  • Polimorfizm genu MMP-9 (metaloproteinazy 9 RS3918242 C->T) przyczynia się do powstawania choroby 481)ncbi.nlm.nih.gov/pubmed/24079541
  • Polimorfizm genu CF(rs141853578 G119R) to czynnik zwiększający ryzyko rozwinięcia się ostatniego/najgorszego stadium AMD. 482)ncbi.nlm.nih.gov/pubmed/29392637
  • Polimorfizmy genów UNG(rs2337395 C/C) oraz SMUG1(rs3086404 allela A) odgrywają pewną rolę(zwiększone ryzyko) w AMD 483)ncbi.nlm.nih.gov/pubmed/23714858
  • U zwierząt polimorfizm genu ApoE powoduje hipercholesterolemie i wywołuje AMD. U myszy następuje wtedy zwiększone utlenianie się tłuszczy(peroksydacja lipidów) i zwiększona ekspresja czynnika wzrostu śrudbłonka VEGF jak i również metaloproteinazy-2 MMP-2. Luteolina jak i glutation redukują VEGF i MMP-2 u w/w zwierząt oraz zapobiegają zmianą morfologicznym siatkówki. 484)ncbi.nlm.nih.gov/pubmed/23738034
  • Polimorfizm geny ABCA4 (G1961E i D2177N) zwiększają ryzyko zachorowania na AMD(U Amerykanów takie zwiększone ryzyko jest w związku z typem D2177N natomiast u europejczyków już nie) 485)ncbi.nlm.nih.gov/pubmed/25921964
  • Polimorfizm genu transferyny(transporter i regulator poziomów żelaza) TFRC (c-253G>A) zwiększa ryzyko AMD. 486)ncbi.nlm.nih.gov/pubmed/25915522
  • Polimorfizmy genu CETP (rs5882 i rs708272) zwiększają ryzyko zachorowania na AMD a polimorfizm CETP(rs3764261) chroni przed tą chorobą. 487)ncbi.nlm.nih.gov/pubmed/28918250
  • Gen APOE e4 chroni przed AMD (różne podtypy) 488)ncbi.nlm.nih.gov/pubmed/28889998
  • Podejrzewa się, że zaburzenia genu PEDF mogą wywołać AMD. 489)phmd.pl/api/files/view/2031.pdf
  • Gen FPR1 zwiększa ryzyko wysiękowego AMD. 490)ncbi.nlm.nih.gov/pubmed/25277308
  • Gen CFB (rs641153) może odgrywać rolę protekcyjną w AMD 491)ncbi.nlm.nih.gov/pubmed/24392338
  • Polimorfizm genu Val62Ile związany jest z większym ryzykiem zachorowania na AMD. 492)ncbi.nlm.nih.gov/pubmed/24440287
  • Geny CFH R1210C, COL8A1 oraz RAD51B przyczyniają się do progresji AMD w zaawansowaną jego formę. 493)ncbi.nlm.nih.gov/pubmed/24498017
  • Polimorfizm genu VEGFR1 (rs9554322, rs9582036 i rs9943922) mają związek z AMD (zwiększają ryzyko zachorowania) – w tym przypadku badanie na Chińskiej populacji 494)ncbi.nlm.nih.gov/pubmed/26914796
  • Gen ARMS2 (rs10490924) i jego polimorfizm może mieć związek z podatnością na AMD 495)ncbi.nlm.nih.gov/pubmed/28128407
  • Polimorfizmy genu CFB/C2 (rs9332739, rs547154, rs4151667 i rs641153) chronią przed AMD. 496)ncbi.nlm.nih.gov/pubmed/22440158
  • Polimorfizmy genu CFH(rs800292 i 1410996) oraz C2/CFB (rs4151667) zwiększają ryzyko choroby(badanie na chińskiej populacji). 497)ncbi.nlm.nih.gov/pubmed/23233260
  • Ludzie pozbawieni genu CYP27A1 wykazują różne problemy oczne, dysfunkcje neurologiczne, przewczesną arteriosklerozę i osteoporozę, zaćmę, kryształki cholesterolo-podobne w ciele szklistym czy też druży,defekty komórek nabłonka pigmentu siatkówki. 498)(Bjorkhem et al., 1995; Cruysberg et al., 1995; Dotti et al., 2001; Morgan et al., 1989).
  • Polimorfizm apoliproproteiny E, która zaaganżowana jest w metabolizm cholesterolu (e2,e3 i e3), jest związany z AMD. A apolipoproteina E i gen CFH-Y402H zwiększają ryzyko AMD jak i Alzheimera. Więcej na genów zaangażowanych w powstawanie AMD tutaj – sci-hub.hk/10.1097/APO.0000000000000223 499)ncbi.nlm.nih.gov/pmc/articles/PMC5661646/
  • Zaburzenia działania genu NEP prowadzą do akumulacji amyloidu beta, który przecież obecny jest w druzach, złogach pozakomórkowych oraz w podsiatkówce w AMD. Brak genu NEP u myszy prowadzi do degeneracji komórek nabłonka pigmentu siatkówki gdyż NEP rozkłada amyloid beta. 500)sci-hub.hk/10.1016/j.jchf.2016.02.016
  • Mutacje genu hBest1(VMD2) 501)ncbi.nlm.nih.gov/pubmed/17898294
  • Mutacje genu BEST1 zaburzają sygnalizację wapnia w komórkach nabłonka pigmentu siatkówki 502)ncbi.nlm.nih.gov/pubmed/25878489
  • Gen CGRP(CALCA) – gen peptydu związanego z kalcytoniną zapobiega przed wyciekami w neowaskularyzacji naczyniówki. 503)ncbi.nlm.nih.gov/pubmed/25857228
  • Polimorfizm genu IL-17A zwiększa ryzyko AMD (rs2275913 AA i rs3748067TT), ale i również po prostu nadmiernie pobudzona ta cytokina jest zaangażowana w patogenezę tej choroby 504)ncbi.nlm.nih.gov/pmc/articles/PMC4022009/#B34 505)ncbi.nlm.nih.gov/pubmed/25028103
  • CYP24A1 i polimorfizm tego genu zwiększa ryzyko obydwóch form AMD(zwłaszcza mokrej). 506)ncbi.nlm.nih.gov/pmc/articles/PMC3525248/
  • BCO2 to gen alternatywnej ścieżki przekształcania karetonoidów do witaminy A. Jego receptory znajdują się na wewnętrznej membranie mitochondriów. Mutacje tego genu mogą przyczyniać siędo stresu mitochondrialnego, degeneracji plamki żółtej, anemi czy cukrzycy typu 2. Nie ma natomiast receptorów tego genu w siatkówce lub są nieaktywne. 507)ncbi.nlm.nih.gov/pmc/articles/PMC5068469/
  • Polimorfizm genu RAD51B rs17105278 T>C i rs4902566 C>T jest związany z wyższym ryzykiem AMD. 508)ncbi.nlm.nih.gov/pmc/articles/PMC4082603/
  • Siatkówka z zaburzeniami enzymu/genu CYP27A1 wprowadzana jest w stan hipoksji, akywowane są komórki Mullera i złogi cholesterolu w okolicy komórek pigmentu siatkówki. Ponadto może dojść do wycieku z naczyń krwionośnych w obrębie siatkówkowo-naczyniówkowym. 509)ncbi.nlm.nih.gov/pubmed/22820291/
  • Allela C czy też A/C w polimorfizmie genu SOD1 redukuje ryzyko AMD 510)ncbi.nlm.nih.gov/pubmed/27935234
  • Polimorfizmy genu CFH rs1061170 i rs1410996 (allele T) mogą przyczyniać się do zwiększonego ryzyka AMD zwłaszcza mokrej postaci. 511)ncbi.nlm.nih.gov/pubmed/26727378
  • Polimorfizm genu SCARB1(odpowiedzialny za metabolizm tłuszczy i antyoksydantów) rs5888 (allela TT) zmniejsza ryzyko AMD z kolei. 512)ncbi.nlm.nih.gov/pubmed/27428740
  • Polimorfizm genu rs28366003 (MT2A) A/G zwiększa(i to konkretnie bo 9krotnie) ryzyko suchego AMD (badanie na populacji Hiszpańskiej) 513)ncbi.nlm.nih.gov/pubmed/28635422
  • Tu z kolei badanie mówiące o zwiększonym ryzyku AMD tj.synergicznym związku polimorfizmu genu ABCA4 oraz palenia papierosów. 514)ncbi.nlm.nih.gov/pubmed/26261643
  • Polimorfizm genu ADIPOQ(rs822396) allela G zwiększa ryzyko zaawansowanego AMD 515)ncbi.nlm.nih.gov/pubmed/26301885
  • TLR2 Arg753Gln to gen ryzyka AMD (obu typów) 516)ncbi.nlm.nih.gov/pubmed/26398587
  • Polimorfizm genu MTND2*LHON4917G (4917G) zwiększa ryzyko AMD. 517)ncbi.nlm.nih.gov/pubmed/18461138
  • W mózgu za rozkład cholesterolu(jego eliminację) odpowiada gen CYP46A1 (rozkłada go do 24-hydroxycholesterolu). Co ciekawe w siatkówce tzn.w komórkach nabłonka pigmentu siatkówki oraz w komórkach zwojowych siatkówki także występuje ten enzym. Innymi enzymami rozkładu cholesterolu występującymi w tym obszarze są CYP27A1,CYP11A1. Ich polimorfizmy lub hamowanie jakimiś suplementami,lekami czy jedzeniem napewno będzie niekorzystne w przypadku osób z AMD. 518)ncbi.nlm.nih.gov/pubmed/9717719/519)ncbi.nlm.nih.gov/pmc/articles/PMC4058366/520)ncbi.nlm.nih.gov/pubmed/17453958/521)ncbi.nlm.nih.gov/pubmed/18241055/522)ncbi.nlm.nih.gov/pubmed/12686551/523)ncbi.nlm.nih.gov/pubmed/18241055/. Najwyższe stężenie enzymu CYP rozkładającego cholesterol w ludzkich tkankach nabłonka pigmentu siatkówki jest CYP27A1,wielkokrotnie większe niż CYP46A1 który to rozkłada cholesterol w mózgu. 524)ncbi.nlm.nih.gov/pubmed/9717719/
  • Możliwe, że polimorfizmy genu TIMP3 przyczyniają się do AMD. TIMP3 (wysokie poziomy) powoduje zgrubienie membrany Brucha. 525)ncbi.nlm.nih.gov/pmc/articles/PMC2906603/
  • Gen CD36 i jego polimorfizmy związany jest z mokrą postacią AMD (w populacji Japońskiej) 526)ncbi.nlm.nih.gov/pmc/articles/PMC2806007/
  • Gen Gln192Arg pełni funkcje protekcyjną w mokrej postaci AMD. 527)ncbi.nlm.nih.gov/pubmed/20042177
  • Polimorfizm CFI rs141853578 (G119R) to zwiększone ryzyko wystąpienia zaawansowanej formy AMD. (badanie na populacji Irańskiej – na innych populacjach problemy z tym genem są rzadsze) 528)ncbi.nlm.nih.gov/pubmed/29392637
  • Polimorfizm CFH Y402H może mieć funkcje protekcyjne(populacja turecka). 529)ncbi.nlm.nih.gov/pubmed/27404493
  • Gen składowej dopełniacza C3 R102G i P314L zwiększają ryzyko AMD 530)ncbi.nlm.nih.gov/pubmed/19168221
  • Kombinacja polimorfizmów rs3793917 CC i rsrs1061170 (TC/CC) (hen HTRA1 i CFH) zwiększa ryzyko mokrego typu AMD. 531)ncbi.nlm.nih.gov/pubmed/25883802
  • Polimorfizmy genu CFI rs10033900T (allela C) i rs2285714 (allela C) mogą zwiększać ryzyko zachorowania na AMD. 532)ncbi.nlm.nih.gov/pubmed/26949655
  • Polimorfizm genu cytokiny zapalnej TNF alfa (TNF-308 allela AA) pełni funkcje protekcyjną przed AMD. 533)ncbi.nlm.nih.gov/pubmed/27213791
  • Gen HTRA1 rs11200638 (allela AA i AG) zwiększa ryzyko amd 2.36x. (badanie na populacji brazylijskiej) 534)ncbi.nlm.nih.gov/pubmed/28846052
  • Gen ABCA1 rs1883025 allela T związany jest z ryzykiem zachorowania na AMD. 535)ncbi.nlm.nih.gov/pubmed/26608582
  • Gen CX3CR1 rs3732379 allela T może zwiększać ryzyko zachorowania na AMD. 536)ncbi.nlm.nih.gov/pubmed/26464724
  • Polimorfizm genu CX3CR1 T280M i V249l (allela T lub TT) zwiększa ryzyko AMD. ncbi.nlm.nih.gov/pubmed/26305531
  • Polimorfizm G/G genu g.32373708 G>A-IRP1 (rs867469) związany jest ze zwiększonym ponad 3x ryzykiem AMD, genotyp G/a z kolei zmniejsza ryzyko zarówno suchej jak i mokrej postaci tej choroby. Allela G g.49520870 G>A-IRP2 zwiększa ryzyko suchej odmiany a genotyp A/A i allela A obniża ryzyko. 537)ncbi.nlm.nih.gov/pubmed/22331484
  • Niedobór autofagii może predysponować do AMD (w tym badaniu akurat delecja genów Atg5 i Atg7 powoduje niedobór autofagii) 538)ncbi.nlm.nih.gov/pubmed/28465655
  • Polimorfizm genu VEGF (rs833061) obniża ryzyko mokrego AMD a rs1413711 i rs3025039 zwiększa. 539)ncbi.nlm.nih.gov/pubmed/24689893
  • Allela T rs10483810 (gen RAD51) zwiększa ryzyko zaawansowanej formy AMD (badanie na populacji Chińskiej) 540)ncbi.nlm.nih.gov/pubmed/23868022
  • Posiadanie przynajmniej jednej alleli T genu LIPC rs10468017 zmniejsza ryzyko zaawansowanej postaci AMD. 541)ncbi.nlm.nih.gov/pubmed/25010633
  • Polimorfizmy genu (tj.obydwa występujące u danego człowieka) CFH rs1061170(allela TC lub CC) i HTRA1 rs3793917(allela CC) przyczyniają się do mokrego AMD. 542)ncbi.nlm.nih.gov/pubmed/25883802
  • Polimorfizm genu transferyny rs4481157 (allele GG) zmniejsza ryzyko AMD, GA może zwiększać. Co dziwne GA zmniejsza postęp choroby(jak już jest) do mokrej jego formy. Gen transferyny rs8177178 (GG) to mnijeszy poziom transferyny zmniejszający tym samym ryzyko AMD. 543)ncbi.nlm.nih.gov/pubmed/23089144
  • Polimorfizm genu CFH Y402H (allela C) zwiększa ponad 2 krotnie ryzyko AMD (badanie na Chińskiej populacji). 544)ncbi.nlm.nih.gov/pubmed/22762059
  • Polimorfizm genu czynnika H układu dopełniacza (CFH) oraz wysokie CRP wskazujące na stan zapalny mogą predysponować do rozwoju mokrego AMD. 545)ncbi.nlm.nih.gov/pubmed/27778189
  • Polimorfizm (allela CC) genu SIRT1 rs1277836 zwiększa ryzyko AMD. 546)ncbi.nlm.nih.gov/pubmed/26656366
  • Gen HTRA1 (rs11200638 i rs2672598) i jego polimorfizm jest związany z wyższym ryzykiem zachorowania na AMD(w populacji Irańskiej). 547)ncbi.nlm.nih.gov/pubmed/26989749
  • Geny CFH, C2, C2, CFI, CFB przyczyniają się do ryzyka AMD i jak już się ta choroba pojawi – do jej postępowania. 548)ncbi.nlm.nih.gov/pubmed/25034031/549)ncbi.nlm.nih.gov/pubmed/22067048/
  • Polimorfizmy CFH I62V i ARMS2 A69S 550)ncbi.nlm.nih.gov/pubmed/25788651
  • Polimorfizm glutation peroksydazy (GPx Pro197Leu) zmniejsza zdolność organizmu do walki z wolnymi rodnikami(w siatkówce oka) prowadząc do AMD(w sensie zwieksza ryzyko zachorowania). 551)ncbi.nlm.nih.gov/pubmed/27935234
  • Polimorfizm genu Apolipoproteiny E (APOE e4) zmniejsza ryzyko AMD 552)ncbi.nlm.nih.gov/pubmed/28889998
  • Polimorfizm metaloproteinazy MMP-2 rs24386 (C->T) związany jest z rozwinięciem się ciężkich druz u osób z AMD. 553)ncbi.nlm.nih.gov/pubmed/28944191
  • Sugeruje się, że nadmiernie pobudzony gen HRTA1 może prowadzić do neowaskularyzacji siatkówki. 554)ncbi.nlm.nih.gov/pubmed/27125063
  • Gen lipazy wątrobowej (LIPC) rs10468017(allela T) i jego polimorfizm związany jest z mniejszym ryzkiem zaawansowanej formy AMD. 555)ncbi.nlm.nih.gov/pubmed/25010633
  • ADIPOQ wariant rs82239 może być markerem podatności na AMD (allela G zwiększa ryzyko powstania zaawansowanej formy AMD). 556)ncbi.nlm.nih.gov/pubmed/26301885

 

Zwyrodnienie plamki żółtej (AMD) leczenie naturalne

Opcji leczniczych czy też wspomagająćych leczenie jest ogrom(w sensie zarówno interwencji, suplementów, ziół i syntetyków) także podzieliłem wszystkie informacje z badań i raportów medycznych na kilka kategorii.

Zwyrodnienie plamki żółtej (AMD) – dieta, suplementy diety i zioła

  • Podwyższony poziom homocysteiny zwiększa ryzyko zachorowania na AMD, tak samo jak niskie poziomy witaminy B12 czy też b9. B6 także redukuje ryzyko zachorowania. 557)academic.oup.com/ajcn/article/98/1/4/4578338. Już samo łagodne czy też umiarkowane podwyższenie poziomu homocysteiny wpływa na rozregulowanie naczyń krwionośnych i dysfunkcje śródbłonka. Może to przyczyniać się do obrzęku plamki żółtej 558)ncbi.nlm.nih.gov/pubmed/18320515. Należy zaznaczyć, że wysoka homocysteina może spowodować zaburzenia aktywności genów transkrypcyjnych i czynników stanu zapalnego takich jak CCL5, CEBPB, IL13RA2, IL15RA, IL6, IL8 i CXCL3(wszystko to jest podniesione w zwiazku z wysoką homocysteiną) w siatkówce oka. 559)ncbi.nlm.nih.gov/pubmed/28546923 a hiperhomocysteinemia może być jedną z przyczyn ryzyka AMD. 560)ncbi.nlm.nih.gov/pubmed/28221439. Kolejne badanie sugeruje, że B12 i folian(aktywna forma witaminy B9) redukują to ryzyko(gdyż zmniejszają poziomy homocysteiny). 561)ncbi.nlm.nih.gov/pubmed/23636242. Jedno z badań dowiodło, że poziomy homocysteiny są wyższe u osób chorujących względem osób zdrowych,poziomy witaminy B12 są niższe tak samo jak i poziomy B9. 562)ncbi.nlm.nih.gov/pubmed/26194346 Ponadto homocysteina(wysoki poziom) przyczynia się do powstawania AMD poprzez zmniejszenie aktywności połączeń ścisłych chroniących bariere krew-oko, zaburza aktywność fagocystyczną, zmniejsza międzykomórkową rezystancję elektryczną). 563)ncbi.nlm.nih.gov/pubmed/26885895
  • STAT3 podwyższa poziomy białek przeżycia komórkowego Bcl-xl w różnych typach komórek. Pobudza ścieżkę Wnt co przyczynia się do protekcji przed apoptozą komórek nabłonka pigmentu siatkówki(chroni przed stresem oksydacyjnym)(brak STAT3 powoduje, że znika protekcyjne działanie ścieżki Wnt). TLR3 podnosi poziomy STAT3. Nie ma pewności czy STAT3 powoduje neowaskularyzację naczyniówki czy może jest ono podniesione na skutek neowaskularyzacji. N-acetyl cysteina podczas wysokich poziomów glukozy we krwi redukuje STAT3 i ekspresję VEGF jak i również terapia antyoksydantami robi to samo. 564)ncbi.nlm.nih.gov/pmc/articles/PMC3876436/
  • Hiperhomocysteinemia(czyli nadmiar homocysteiny) powoduje aktywację stresu oksydacyjnego który ma negatywny wpływ na funkcjonowanie nabłonka siatkówki. NAC(n-acetylo cysteina) może w tym przypadku pomóc w walce z wolnymi rodnikami. 565)ncbi.nlm.nih.gov/pubmed/28931831. Ponadto NAC przeciwdziała podniesionej aktywności kaspazy 3 i 7 oraz zwiększonej produkcji wolnych rodników przez 7Kcho(7-ketocholesterol) jak i również przeciwdziała nadmiernej produkcji wolnych rodników przez retikulum endoplazmatyczne 566)ncbi.nlm.nih.gov/pubmed/28116245, chroni przed stresem retikulum endoplazmatycznego 567)ncbi.nlm.nih.gov/pubmed/25402962,  hamuje stres oksydacyjny i aktywację NF-kB,jak i także nadmiar makrofagów czy neutrofili w plamce żółtej siatkówki, hamuje MCP-1, VEGF czy też CXCL1 568)ncbi.nlm.nih.gov/pubmed/20958190 oraz chroni siatkówkę przed uszkodzeniem wywołanym przez światło niebieskie. 569)ncbi.nlm.nih.gov/pubmed/28769003
  • Krople do oczu z flawonoidami 3x dziennie polepszają krążenie krwi w oku oraz zapobiegają neowaskularyzacji plamki żółtej. 570)ncbi.nlm.nih.gov/pubmed/22553528
  • DIM to suplement pochodzący z warzyw kapuścianych który hamuje produkcje VEGF i aktywację czynnika indukcji hipoksji(HIF-1alfa) co jest bardzo przydatne w przypadku zwłaszcza mokrej postaci AMD. 571)ncbi.nlm.nih.gov/pubmed/25955241
  • Bajkalina(substancja zawarta między innymi w tarczycy bajkalskiej) chroni nabłonek barwnikowy siatkówki przed stresem oksydacyjnym, zmniejsza aktywność metaloproteinazy 9 (MMP-9) w macierzy oraz zmniejsza poziomy czynnika VEGF dzięki czemu chroni siatkówkę. 572)ncbi.nlm.nih.gov/pubmed/20879805
  • Bioflawony z tarczycy Bajkalskiej (Wogonina, baicalein i baicalin) hamują produkcję tlenku azotu przez makrofagi jak i również obniżają cytokiny zapalne IL-1b, IL-6, IL-8 czy czynnik transkrypcyjny NFkappaB oraz posiadają właściwości antyoksydacyjne. Ponadto hamują angiogenezę komórek nabłonka. H2O2 zwiększa produkcję MMP-9 i VEGF , które obniża bajkalina. Pełni funkcje protekcyjne względem komórek zwojowych siatkówki co jest kluczowe w AMD. Co ciekawe możliwe że przywraca/normalizuje spadki glutationu i może chronić przed skutkami niedokrwienia (zwiększa poziomy HO-1). Przywraca do normy niskie poziomy ZO-1 (jest to białko wchodzące w skład połączeń ścisłych czyli tych które tworzą barierę krew-siatkówka). Redukuje poziomy VEGF i zwiększa PEDF. 573)sci-hub.hk/10.1089/jop.2014.0074574)ncbi.nlm.nih.gov/pubmed/28260013. Baikalina(substancja zawarta w tarczycy bajkalskiej) hamuje VEGF,PDGF i metaloproteinazę MMP-2. Sugeruje się, że może być dobrym kandydatem do leczenia AMD. 575)ncbi.nlm.nih.gov/pubmed/24502359 Kolejna substancja z tego zioła – wogonina -chroni komórki nabłonka pigmentu siatkówki przed apoptozą wywołaną przez h2o2 oraz przed stresem oksydacyjnym. 576)ncbi.nlm.nih.gov/pubmed/25432585. Substancja ta działanie neuroprotekcyjne. Może ona zwiększać ilość neuronów siatkówki poprzez wpływ na komórki macierzyste szpiku kostnego oraz poprzez zahamowanie ścieżki Notch-1. Wogonina możę być przydatna w chorobach degeneracyjnych siatkówki. 577)ncbi.nlm.nih.gov/pubmed/28415701. Potwierdza się, że tarczyca bajkalska hamuje formowanie się naczyń krwionośnych w okolicach plamki żółtej. Osłabia ona aktywację VEGF,PDGF i MMP-2. Sugeruje się, że może się ona nadać w przypadku wysiękowego zwyrodnienia plamki żółtej. 578)ncbi.nlm.nih.gov/pubmed/24502359
  • NAC(n-acetylocysteina) to aminokwas który chroni komórki pigmentacyjne nabłonka oka przed niedotlenieniem. (robi to poprzez hamowanie nadmiernej aktywności genu p53 i CASP8) 579)ncbi.nlm.nih.gov/pubmed/20653475
  • Idebenon to syntetyczna pochodna/analog koenzymu Q10. Chroni on komórki pigmentu siatkówki przed śmiercią i stresem oksydacyjnym poprzez stabilizacje białek,które decydują o 'życiu’ komórki (białka Bax i Bcl-2). 580)ncbi.nlm.nih.gov/pubmed/26044821
  • Oliwa z oliwek zmniejsza ryzko wystąpienia późnej formy AMD. Inne badanie potwierdza, że oliwa z oliwek może być dobrą opcją zapobiegania rozwojowi AMD (kwasy zawarte w tym oleju hamują cytokiny zapalne IL-1beta, IL-6, TNF alfa, interferon gamma oraz czynnik VEGF). 581)ncbi.nlm.nih.gov/pubmed/27467382 582)ncbi.nlm.nih.gov/pubmed/26914244583)ncbi.nlm.nih.gov/pubmed/19433719. Oliwa dzięki zawartości hydroksytyrozolu (HTS) działa przeciwrodnikowo chroniąc tym samym mitochondria komórkowe. 584)ncbi.nlm.nih.gov/pubmed/20938484 Z kolei inne badanie stwierdza, że wraz z omega-3 przyczynia się do mniejszego ryzyka zachorowania na AMD. 585)ncbi.nlm.nih.gov/pubmed/19433719
  • Wysoko skoncentrowane ekstrakty z borówek wykazują pozytywne działanie w AMD(zmniejszają utlenianie się tłuszczy i działają przeciwrodnikowo w siatkówce oka) 586)ncbi.nlm.nih.gov/pubmed/16075680
  • Viagra powoduje rozszerzenie naczyń krwionośnych siatkówki – nie wiadomo jednak czy polepsza to ich ukrwienie (podejrzewam, że aminokwas l-arginina będzie działał tak samo) – teoretycznie w suchej odmianie AMD może być ona(l-arginina) pomocna 587)ncbi.nlm.nih.gov/pubmed/16530757
  • Jak najczęstsze spożywanie świeżych warzyw i owoców w sezonie zmniejsza ryzyko AMD 588)ncbi.nlm.nih.gov/pubmed/14704513
  • Przydatna może być także witamina C która bardzo dobrze sobie radzi z wolnymi rodnikami 589)Beatty et al. 2000; Sies et al. 1992; Fig. 1
  • Proantocyjaniny z jagód, poprzez swoje silne działanie antyoksydacyjne wykazują działanie zmniejszające poziom czynnika VEGF co hamuje postęp choroby. 590)ncbi.nlm.nih.gov/pubmed/29393642
  • Zewnątrzkomórkowe ATP przyczynia się do degeneracji fotoreceptorów poprzez nadmiernie pobudzone receptory P2 (w tym P2x7 którego negatywne nadmiernie pobudzenie zostało przebadane). Szafran (przyprawa/zioło) hamuje receptory P2X7. 591)ncbi.nlm.nih.gov/pmc/articles/PMC4749535/. Ponadto szafran poprawia przepływ krwi w siatkówce, wykazuje działanie antyoksydacyjne (zwiększa SOD, glutation GSH i peroksydazę glutationu GPx) 592)sci-hub.hk/10.1080/10408398.2013.879467, wykazuje działanie protekcyjne względem siatkówki oka 593)ncbi.nlm.nih.gov/pubmed/23938314 (wykazano , że podawanie go w ilości 30mg poprawia funkcje siatkówki osób z AMD) 594)ncbi.nlm.nih.gov/pubmed/28289690. Inne badanie potwierdziło także jego pozytywną rolę w poprawie funkcji plamki żółtej w początkowym stadium AMD. 595)ncbi.nlm.nih.gov/pubmed/22852021

Wpływ szafranu,kwercytyny,resweratrolu, zioła Danshen, katechin na procesy hamowania stanu zapalnego(tutaj na kaspazy oraz nagromadzenie się wolnych rodników które je pobudzają) 596)ncbi.nlm.nih.gov/pmc/articles/PMC3703386/

 

  • Sulforafan(substancja zawarta między innymi w kiełkach brokuł) pobudza enzymy antyoksydacyjne takie jak Nrf2 i Thioredoxin-1 – Trx1) oraz hamuje czynniki zapalne w komórkach nabłkonka barwnika siatkówki. Sugeruje się, że może być cenną substancją do zapobiegania czy też opóźniania postępu choroby. W innym badaniu potwierdzono, że l-sulforafan promuje regenerację komórek siatkówki pod obciążeniem oksydantów(podnosi on aktywność genu glutation s-transferazy) 597)ncbi.nlm.nih.gov/pubmed/24187606 598)ncbi.nlm.nih.gov/pubmed/29376497
  • Korzeń żeń szenia chroni komórki nabłonka pigmentu siatkówki przed niszczycielskim wpływem nadmiernie pobudzonego czynnika VEGF (hamuje go) 599)ncbi.nlm.nih.gov/pubmed/24527228
  • Luteina chroni siatkówkę oka poprzez hamowanie nNOS oraz cyklooksygenazy-2(substancja powodująca stan zapalny która hamuje np.aspiryna). Sugeruje się, że dzięki temu luteolina hamuje śmierć komórek gdzie nastąpiło niedokrwienie w siatkówce oka. 600)ncbi.nlm.nih.gov/pubmed/16631350
  • Ekstrakt z borówek niweluje śmierć komórek siatkówki wywołaną światłem, redukuje stres oksydacyjny i stres w retikulum endoplazmatycznym siatkówki. 601)ncbi.nlm.nih.gov/pubmed/28570634
  • Astaksantyna to substancja występująca między innymi w krylu morskim. Jest to karotenoid, który jest w stanie ochronić siatkówkę i jej komórki przed uszkodzeniem spowodowanym światłem(w teście użyto światła 8000 luxów). Wykazuje działanie antyoksydacyjne. 602)ncbi.nlm.nih.gov/pubmed/24152963. Redukuje poziomy H2O2 które przyczyniają się do utraty widzenia, śmierci komórkowej i generowania wolnych rodników. Uruchamia ścieżkę Nrf2-ARE która uruchamia detoks w organizmie(pobudza enzymy NQO1, HO-1, GCLM GCLC) oraz hamuje kaspazę-3 która doprowadza do śmierci komórkowej. Ponadto aktywuje ścieżkę Pl3K/Akt która pełni funkcje protekcyjną względem komórek nabłonka pigmentu siatkówki oka. 603)ncbi.nlm.nih.gov/pubmed/23901249. Astaksantyna wykazuje silniejsze właściwości antyoksydacyjne niż luteina czy zeaksantyna oraz przenika przez barierę krew-oko kumulując się w siatkówce (tak samo jak luteina). Szczury karmione astaksantyną miały mniejsze zniszczenia fotoreceptorów spowodowane światłem niż te, którym jej nie podawano. Ponadto chroni mitochondria przed peroksydacją lipidów. 604)sci-hub.hk/10.1016/S0167-7799(03)00078-7

Wpływ kurkuminy, żeń szenia, DanShen na zahamowanie stanu zapalnego. 605)ncbi.nlm.nih.gov/pmc/articles/PMC3703386/

 

  • Kwas kofeinowy wykazuje działanie przeciwangiogenne oraz antyoksdaycyjne (hamuje neowaskularyzację siatkówki). 606)ncbi.nlm.nih.gov/pubmed/19589397
  • Suplementacja witaminami z grupy B (tutaj polecam aktywne formy) może zredukować ryzyko choroby 607)ncbi.nlm.nih.gov/pubmed/19237716
  • Alfa tokoferol(forma witaminy E) może pełnić funkcje antyoksydacyjną w siatkówce oka(aktywuje enzym Nrf2). 608)ncbi.nlm.nih.gov/pubmed/20153624
  • Sipjeondaebo-tang to Azjatycka mieszanka ziół która zmniejsza poziomy VEGF oraz płytkopochodny czynnik wzrostu PDGF , zatem zmniejsza neowaskularyzację. 609)ncbi.nlm.nih.gov/pubmed/25365937
  • Naringenina (substancja zawarta w cytrusach) chroni przed neowaskularyzacją plamki żółtej.610)ncbi.nlm.nih.gov/pubmed/22553507
  • Salvia miltiorrhiza(Dan Shen) to zioło, które zawiera w sobie substancję zwaną salvianolic Acid A,który aktywuje enzymy Nr2/HO-1 w komórkach nabłonka pigmentu i chroni przed stresek oksydacyjnym poprzez aktywację ścieżki sygnałowej Akt/mTORC1. 611)ncbi.nlm.nih.gov/pubmed/24486344
  • Kwercetyna to substancja zawarta między innymi w ziołach. Hamuje powstawanie neowaskularyzacji plamki żółtej in vitro i in vivo oraz zwiększa przepływ krwi naczyniówkowej. 612)ncbi.nlm.nih.gov/pubmed/21425492
  • Celastrol to substancja zawarta między innymi w roślinie Winorośl zeusa(trzyskrzydlec – Tripterygium wilfordii),zdolna do zahamowania odpowiedzi zapalnej wrodzonego układu odpornościowego w nabłonku pigmentu siatkówki oka poprzez zahamowanie Nf-kB(czy też cytokiny IL-6) oraz białka szoku termicznego – Hsp70(Hsp70 to regulator Nf-kB). 613)ncbi.nlm.nih.gov/pubmed/21683142
  • TUDCA chroni fotoreceptory po odklejeniu się siatkówki. Może to ochronić przed utratą wzroku w chrobach takich jak między innymi AMD. 614)ncbi.nlm.nih.gov/pubmed/21961034615)ncbi.nlm.nih.gov/pubmed/20565307
  • Berberyna to substancja zawarta między innymi w berberysach. W AMD powoduje ona obniżenie się poziomu mikrogleju/makrofagów,MDA i ogólnie stresu oksydacyjnego. Chroni siatkówkę przed dewastacyjnym działaniem światła. 616)ncbi.nlm.nih.gov/pubmed/26475979
  • Polifenole z zielonej herbaty chronią plamkę żółtą przed uszkodzeniami spowodowanymi przez promienie UVB poprzez wpływ na ekspresję genów oraz protekcję mitochondriów komórkowych.617)ncbi.nlm.nih.gov/pubmed/20702817
  • Witamina A łagodzi degenerację siatkówki (u otyłych szczurów). 618)ncbi.nlm.nih.gov/pubmed/23036575
  • Korzeń żeń szenia hamuje produkcję czynnika VEGF w nabłonku pigmentu siatkówki oka. 619)ncbi.nlm.nih.gov/pubmed/24527228
  • Wąkrotka azjatycka i naostrzyk(Centella asiatica i Melilotus) (flawonoidy z tych ziół) wykazują pozytywne działanie w tej chorobie.
  • Interferon beta promuje proliferację komórek nabłonka pigmentu siatkówki i hamuje aktywność komórek nabłonka neowaskularyzacji co przyczynia się do regresji neowaskularyzacji plamki zółtej. Pomimo tego bardzo ciekawego badania z interferonami zarówno alfa jak i beta bym uważał gdyż mogą dosłownie zniszczyć wzrok i spowodować inne permanente problemy zdrowotne. (moim zdaniem to wynika ze stosowania zbyt dużych dawek jak i faktu,że jest to po prostu syntetyk – sugerowałbym użycie ziół, które zwiększają ten typ interferonu np.rdestowiec japoński który ma w sobie b.duże ilości resweratrolu). 620)ncbi.nlm.nih.gov/pubmed/7540359
  • Dieta o niskim indeksie glikemicznym(IG) zmniejsza ryzyko druz i zaawansowanej formy AMD. Inne badanie potwierdza,że osoby z ryzykiem zaawansowanego AMD mogą odczuć pozytywny efekt spożywania posiłków z węglowodanów o niższym poziomie indeksu glikemicznego.621) ncbi.nlm.nih.gov/pubmed/19410952 622)ncbi.nlm.nih.gov/pubmed/17921404
  • Kwas rozmarynowy(zawary naturalnie w rozmarynie) hamuje neowaskularyzacje siatkówki. 623)ncbi.nlm.nih.gov/pubmed/19470386
  • Celestrol to substancja roślinna(występująca w winorośli Zeusa), która hamuje stany zapalne w komórkach nabłonka pigmentu siatkówki poprzez regulację białka szoku termicznego Hsp70 oraz czynnik transkrypcyjny NF-kB(Hsp70 jest regulatorem NF-kB). Ponadto redukuje cytokinę IL-6 która odgrywa ważną rolę(zapalną) w tej chorobie 624)ncbi.nlm.nih.gov/pubmed/21683142
  • R-ALA (to kwas R-alfa liponowy) zwiększa aktywność dysmutazy nadtlenkowej SOD co może wspierać leczenie AMD. 625)ncbi.nlm.nih.gov/pubmed/22678104 Chroni siatkówkę przed degeneracją wywołaną przez światło(chroni komórki fotoreceptorowe) 626)ncbi.nlm.nih.gov/pubmed/25146987 oraz chroni komórki Mullera przed chryzenem(substancja występująca w dymie papierosowym) i może zredukować lub zapobiec degeneracji tych komórek w AMD. 627)ncbi.nlm.nih.gov/pubmed/23335848
  • Akroleina to toksyna zawarta w dymu papierosowym. Uszkadza ona mitochondria komórek siatkówki oraz powoduje ich dysfunkcje poprzez redukcję glutationu, enzymów antyoksydacyjnych, ekspresji Nrf2.. R-ALA redukuje jej toksyczne oddziaływanie. 628)ncbi.nlm.nih.gov/pubmed/17197552
  • Sok z żurawiny wykazując działanie przeciwrodnikowe redukuje progresję AMD – naturalnie chodzi o sok żurawinowy wyciśniety pare minut przed jego spożyciem (a nie syf nazywany sokiem 100%). 629)ncbi.nlm.nih.gov/pubmed/27937080
  • B6,B9 i B12 mogą obniżać ryzyko AMD. 630)ncbi.nlm.nih.gov/pubmed/19237716
  • Kwas kofeinowy hamuje neowaskularyzację siatkówki,zatem hamuje angiogenezę. Może to być przydatne w mokrej formie charakteryzowanej choroby. 631)ncbi.nlm.nih.gov/pubmed/19589397 To samo działanie ma kwas chlorogenowy 632)ncbi.nlm.nih.gov/pubmed/20532143. Obydwa kwasy występują w wielu ziołach.
  • Kwas ferulowy powstrzymuje pprodukcję amyloidu beta w nabłonku komórek oczu. 633)ncbi.nlm.nih.gov/pubmed/28409157
  • Artemisinia to mocarne zioło, które chroni komórki siatkówki przed zniszczeniami wywołanymi przez światło oraz przez h2o2(chroni neurony siatkówki). 634)ncbi.nlm.nih.gov/pubmed/28447781
  • Pycnogenol poprawia mikrokrążenie w siatkówce oka u osób z retinopatią cukrzycową – myślę, że w przypadku odmiany suchej AMD może być również bardzo przydatny. 635)ncbi.nlm.nih.gov/pubmed/19916788
  • DIM hamuje HIF-1alfa i aktywność Nf-Kb oraz VEGF. w komórkach nabłonka pigmentu siatkówki 636)ncbi.nlm.nih.gov/pubmed/25955241
  • Hibiscus sabdariffa(Ketmia szczawiowa) i hibiscetyna(hibiscetin), substancja zawarta w Ketmi jest regulatorem angiogenezy(jak i ogólnie antocyjany) co może być wykorzystane do kontroli tego procesu w AMD. 637)ncbi.nlm.nih.gov/pubmed/28459020
  • Kwas karnozynowy zawarty w ekstrakcie z rozmarynu przekracza barierę krew mózg i wykazuje działanie neuroprotekcyjne. Pobudza enzym antyoksydacyjny Nrf2. Chroni komórki nabłonka pigmentu siatkówki oka przed toksycznością h2o2 oraz redukuje formowanie się Prx2. Chroni także oczy przed światłem, zwiększa grubość zewnętrznej powłoki komórek jądrowych siatkówki. 638)ncbi.nlm.nih.gov/pubmed/23081978
  • Nadmiar soli w diecie i odwodnienie organizmu(bardzo często spotykane u osób starszych) prowadzi do zewnątrzkomórkowej osmozy(Osmolalności) co przekłada się na nadciśnienie. Ma to negatywny wpływ na siatkówkę gdyż wysoka osmoza powoduje wzrost VEGF,wzrost czynnika wzrostu fibroblastów, wzrost akwaporyny-5 . Ponadto wzrost stresu osmotycznego powoduje wzrost stanów zapalnych w komórkach nabłonka pigmentu siatkówki. Całość tych procesów wskazuje na zwiększone ryzyko AMD. 639)ncbi.nlm.nih.gov/pubmed/28031693
  • Poziomy DHEA SO4 są niskie w przypadku AMD (co w sumie nie dziwi bo z wiekiem DHEA naturalnie spada tak samo jak poziom praktycznie większości hormonów). Sugerować to też może problem z nadnerczami a jak jest z nimi problem to również i z tarczycą(co potwierdzają inne badania konkretnie właśnie w tej chorobie). DHEA można zakupić i suplementować w formie suplementu diety. 640)ncbi.nlm.nih.gov/pubmed/17157799
  • Idebenone to substancja, którą można kupić w postaić suplementu. Redkuje proapoptyczną(czyli powodującą śmierć) ilość białka Bax oraz aktywuje/zwiększa ilość antyapoptycznego białka Bcl-2 chroniąc tym samym komórki pigmentu siatkówki. 641)ncbi.nlm.nih.gov/pubmed/26044821
  • Acetyl l-karnityna hamuje czynnik B układu dopełniacza (CFB) w komórkach nabłonka pigmentu siatkówki 642)ncbi.nlm.nih.gov/pubmed/29247196 z kolei l-karnityna obniża poziomy MDA(marker peroksydacji lipidów) oraz chroni przed stresem oksydacyjnym oraz zwiększa poziomy glutationu co jest bardzo przydatne w AMD. 643)ncbi.nlm.nih.gov/pubmed/25610013
  • Luteolina i fisetyna chronią komórki nabłonka pigmentu siatkówki poprzez obniżenie stanów zapalnych (redukują aktywację ścieżek MAPK i CREB). 644)ncbi.nlm.nih.gov/pubmed/26619957
  • Wysokie spożycie folianu(aktywnej formy witaminy B9 ) zmniejsza ryzyko progresji atrofii geograficznej. 645)ncbi.nlm.nih.gov/pubmed/26961928
  • Niacyna powoduje rozszerzenie naczyń tętniczych siatkówki jednak potrzeba badań aby potwierdzić jej pozytywne działanie w przypadku np. suchej postaci AMD. 646)ncbi.nlm.nih.gov/pubmed/16877271
  • Z naturalnych produktów hamujących czynnik VEGF można wymienić Luteolinę, apigeninę(która hamuje również HIF-1alfa), genisteinę , Hesperetynę(z owoców cytrusowych), Cremastranone(Z Cremastra appendiculata), kwercytynę(krople do oczu z kwercytyną o stężeniu 1% podawane 3x dziennie hamują neowaskularyzację naczyniówki), Isoliquiritigenin (z korzenia lukreci), Deguelin (z Mundulea sericea), Honokiol(z kory Magnoli), Combretastatin (z Combretum caffrum), Decursin (z Angelica gigas), Withaferin A (z Withani Somnifery). 647)ncbi.nlm.nih.gov/pmc/articles/PMC4259824/
  • Aktywacja receptorów PPAR alfa pełni funkcje protekcyjną przed stresem oksydacyjnym i może przyczyniać się do spowolnienia postępu choroby. 648)ncbi.nlm.nih.gov/pubmed/25385631
  • Ekstrakt z Melisy(melissa officinalis) chroni komórki nabłonka pigmentu siatkówki przed stresem oksydacyjnym. Sugeruje się, że może pełnić funkcje protekcyjne w suchej odmianie AMD. 649)ncbi.nlm.nih.gov/pubmed/26941573
  • W AMD występują zaburzenia komórek gleju. Sugeruje się, że zahamowanie stresu oksydacyjnego i stresu związanego z retikulum endoplazmatycznym może być dobrą opcją na zaburzenia komórek glejowych w AMD. 650)ncbi.nlm.nih.gov/pubmed/29357794
  • Stwierdza się, że poziomy acetylcholinoesterazy(enzym rozkładający acetylocholinę) są na niskim poziomie w komórkach nabłonka pigmentu siatkówki(zdrowej). Stwierdza się, że jej podniesione poziomy mogą być problemem(gdyż podnosi je nadmiar H2O2) w AMD.  Jest masa produktów naturalnych hamujących ten enzym – można o nich poczytać także i na tym blogu(bardzo rozbudowaną listę można znaleźć np.tutaj czytelniamedyczna.pl/2631,hamowanie-aktywnoci-acetylocholinoesterazy-i-butyrylocholinoesterazy-przez-surow.html )651)ncbi.nlm.nih.gov/pubmed/24392323
  • Krople do oczu z n-acetylo karnozyną mogą pomóc w AMD. 652)ncbi.nlm.nih.gov/pubmed/19487926
  • Spadek koenzymu q10 w siatkówce następuje wraz z wiekiem i wynosi ok.40%. Spadek ten wynika z mniejszej wydajności organizmu w walce z wolnymi rodnikami oraz spadkiem syntezy ATP w siatkówce – doprowadzić to może do degeneracji siatkówki. 653)ncbi.nlm.nih.gov/pubmed/19060288 Koenzym Q10 hamuje produkcję wolnych rodników i chroni komórki nerwowe siatkówki przed stresem oksydacyjnym 654)ncbi.nlm.nih.gov/pubmed/28762311, może poradzić sobie z problemem nagromadzenia cholesterolu 7kCh czy też 24S-OHC. 655)ncbi.nlm.nih.gov/pmc/articles/PMC5755337/ Jako że wolne rodniki(ich nadmiar) to podstawowy problem w AMD, wykazano, że poziomy koenzymu q10 u osób z tą chorobą są niższe niż u osób zdrowych, dlatego też sugeruje się, że suplement ten może być pomocny w patogenezie tej choroby. 656)ncbi.nlm.nih.gov/pubmed/11125270
  • Wysoki poziom mleczanu a niski pirogronianu to znany marker zaburzeń mitochondrialnych i jest oznaką, że w AMD zaburzone są funkcje przeciwoksydacyjne. Sugeruje się, żę nadmiar mleczanu jest zaangażowany w patogenezę AMD. Odrazu od siebie muszę dodać, że bardzo dobrym reduktorem mleczanu jest koenzym Q10, który w tej chorobie na pewno bym zastosował ze względu na jego właściwości chroniące mitochondria komórkowe w każdym organie ciała w tym i w siatkówce oka. Innym suplementem który mogłbym zasugerować jest rewelacyjny MitoQ, który bardzo szybko dociera do mitochondriów komórkowych, dobrze sobie radząc ze stresem oksydacyjnym który tam panuje. 657)ncbi.nlm.nih.gov/pubmed/25191529
  • Podawanie inhibitorów proteasomów redukuje stres oksydacyjny w komórkach nabłonka pigmentu siatkówki. Naturalne inhibitory proteasomów to takie substancje jak celastrol, withaferin A, EGCG. 658)ncbi.nlm.nih.gov/pubmed/22903875 659)ncbi.nlm.nih.gov/pubmed/22879419
  • Substancja zawarta w zielu Dan Shen (Salvianolic Acid A) chroni przed utlenianiem się lipidów(które prowadzi do progresji neowaskularyzacji naczyniówki). Ponadto chciałbym dodać, ze Dan Shen przechodzi przez barierę krew mózg zatem także i przez barierę krew-siatkówka i może działać tam przeciwzapalanie i antyoksydacyjnie. 660)ncbi.nlm.nih.gov/pubmed/29081889 661)hindawi.com/journals/ecam/2013/247948/662)ncbi.nlm.nih.gov/pubmed/19216858
  • Fukoidan z Undaria pinnatifida wykazuje działanie anty VEGF oraz obniża HIF-1alfa jak i także NFkappaB. Posiada właściwości antyoksydacyjne oraz zwiększa poziomy Nrf2. Hamuje układ klasyczny i alternatywny układ dopełniacza (przyczepia się do białka C1q i C4 hamująć aktywację klasycznego szlaku dopełniacza) jak i również C3 i C3b. Hamuje MCP-1, Cox-2 i iNOS jak i również TNF alfa i IL-1beta. (z Ecklonia cava, fucoidan z Agarum cribosum może aktywować cytokiny zapalne). 663)ncbi.nlm.nih.gov/pmc/articles/PMC4771984/
  • Cremastranone to homoizoflawon, który posiada właściwości hamowania angiogenezy w siatkówce oka. 664)ncbi.nlm.nih.gov/pubmed/26035340
  • Kwercytyna pobudza ścieżkę Nrf2 co wykazuje działanie antyoksydacyjne w AMD. 665)ncbi.nlm.nih.gov/pubmed/26643168
  • Borówka bagienna – wjątkowo ciekawa roślina gdyż hamuje fotooksydację A2E która spowodowana jest przez światło niebieskie, redukuje akumulację A2E przyczyniając się tym do protekcji komórek nabłonka pigmentu siatkówki. 666)ncbi.nlm.nih.gov/pubmed/26589689
  • Barleria lupulina to roślina która posiada w sobie katechole (alky catechols) które pobudzają enzym Nrf2. Polepsza funkcje połączeń ścisłych niezbednych do zachowania integralności bariery siatkówka-krew, polepsza funkcje komórek nabłonka i redukuje stan zapalny i przecieki waskularne. 667)ncbi.nlm.nih.gov/pubmed/27660013
  • Polisacharydy z jagod goji (Lycium barbarum) regulują nie poprawnie aktywowane białka śmierci i przetrwania komórkowego – Bax i Bcl-2 chroniąc tym samym komórki nabłonka pigmentu siatkówki przed apoptozą. Przed AMD chroni też ekstrakt ze zwykłych jagód. 668)ncbi.nlm.nih.gov/pubmed/25709900669)ncbi.nlm.nih.gov/pubmed/16075680
  • Druzy powstają poprzez infiltracje(przenikanie) mikrogleju do komórek nabłonka pigmentu siatkówki. Mikroglej to głównie makrofagi, które znajdują się w mózgu i są kontrolowane przez receptory PPAR gamma. Pełni on funkcje zarówno protekcyjna ale także i niszczycielską – może wytwarzać(jeśli jest nadmiernie aktywowany) cytokiny zapalne powodując stan zapalny w obrębie móżgu czy też np.oczu jak i też możę zwiększać poziomy makrofagów i leukocytów. Kurkuma hamuje mikroglej(tak jak to robi moim zdaniem lepsza substancja – syntetyk naltrekson w niskiej dawce). Kurkumina aktywując PPAR gamma przyczynia się do obniżenia produkcji metaloproteinay 9(MMP-9) która powodouje degradację macierzy zewnątrzkomórkowej i stymuluje komórki nabłonka pigmentu atkówki do migracji do membrany Brucha co przyczynia się do patogenzy AMD 670)sci-hub.hk/10.1055/s-0033-1351074
  • Kurkumina reguluje wykorzystanie tlenu, retencję wapnia, reguluje potencjał membran mitochondrialnych i aktywuje kompleksy respiratorowe mitochondriów. Ponadto aktywuje czynnik transkrypcyjny Nrf2. W zaburzeniach siatkówki podwyższa poziomy glutationu, redukuje cytokiny zapalne i czynnik NFkB czy też czynnik VEGF oraz eNOS. Podwyższa HO-1 i redukuje poziomy wolnych rodników. Łatwiej napisać czego kurkumina nie robi w chorobach oczu… 671)sci-hub.hk/10.1002/mnfr.201200718
  • Kurkumina to substancja zawarta w Kurkumie. Badania dowodzą, że może wykazywać pozytywne działanie w syndromie suchego oka czy witreoretinopati. Syndrom suchego oka to między innymi stan zaplny oka, w którym dominują cytokiny zapalne IL-1beta, IL-6 i TNF alfa jak i naturalnie czynnik transkrypcyjny NFkappaB. Kurkuma i kurkumina hamują stan zapalny w tym schorzeniu zatem i powinna także w AMD. Wykazuje także pozytywne działanie w retinopati cukrzycowej. Hamuje kumulację się wapnia Ca(2+). receptory PPAR-gamma są znajdowane w komórkach neuralnych jak i w komórkach nabłonka pigmentu siatkówki – ich aktywacja związana jest z aktywnymi problemami z narządu wzroku. Receptory te odgrywają ważną rolę w przypadku stanu zaplnego. Wykazano, że agoniści(czyli pobudzacze tych receptorów) obniżają stan zapalny(MCP-1, cytokinę L-6, CRP, PAI-1, MMP-9) 672)sci-hub.hk/10.1055/s-0033-1351074. Kurkuma (Curcuma longa) hamuje czynnik VEGF w AMD. Ponadto działa przeciwzapalnie(hamując praktycznie wszystkie cytokiny zapalne) i antyoksydacyjne, zwiększa poziomy SOD oraz glutationu. 673)ncbi.nlm.nih.gov/pubmed/28853916, wykazuje znaczącą poprawę w AMD poprzez regulacje proliferacji, stesu oksydacyjnego i apoptozy komórek nabłonka pigmentu siatkówki chroniąc dzięki temu wzrok 674)ncbi.nlm.nih.gov/pubmed/26445530, hamują akumulację amyloidu beta i jego agregacje a także jego formowanie się w mózgu hamując tym samym jego toksyczność 675)ncbi.nlm.nih.gov/pubmed/22742420, reguluje poziomy NF-kappaB(obniża), AKT, NRF2(zwiększa) i czynników wzrostu dzięki czemu, hamuje stan zapalny i chroni komórki w AMD. Ponadto obniża czynnik VEGF 676)ncbi.nlm.nih.gov/pubmed/19121385677)ncbi.nlm.nih.gov/pubmed/17662242/,  chroni przed zniszczeniami wywołanymi przez światło i zapobiegają apoptozie(śmierci) komórek nabłonka pigmentu siatkówki. 678)ncbi.nlm.nih.gov/pubmed/28155996679)ncbi.nlm.nih.gov/pubmed/28155996
  • Substancje które hamują VEGF to olej sojowy, meisoindigo, artesunat, sulforafan, aplidyna, meisoindigo, kwas 4-O-metylogalowy, celastrol, kwas elagowy, delfinidyna, kurkumina i philinopside A, skopolina, fisetyna i paeoniflorina, kwas kawowy i  polifenol (EGCG) 680)(Jeong, Koh, Lee, Lee, Lee, Bae, Lu and Kim 2011)
  • He-Ying-ing-Re to chińska formuła ziołowa która reguluje połączenia ścisłe(niezbędne do utrzymania bariery krew-oko/siatkówka) i redukuje poziomy AGE. 681)ncbi.nlm.nih.gov/pubmed/25929449
  • Salvianolic Acid A zawarty w zielu Dan Shen (Salvia miltiorrhiza) chroni komórki nabłonka pigmentu siatkówki przed stresem oksydacyjnym i stanem zapalnym poprzez pobudzenie enzymu Nrf2 i dezaktywację Ścieżki P2x7r-Pkr-Nlrp3 682)ncbi.nlm.nih.gov/pubmed/28371616
  • Genisteina (substancja pozyskana z soi ale i nie tylko), hamuje angiogenezę podczas neowaskularyzacji naczyniówki(redukuje poziomy MCP-1, ICAM-1 i MMP-9). 683)ncbi.nlm.nih.gov/pubmed/25113565
  • skQ1 to antyoksydant w postaci kropli który bezpośrednio dociera do mitochondriów komórkowych oczu. Obniża on poziomy receptora węglowodorów aromatycznych AhR). Pobudza enzymy detoksu Cyp1bb1 i Cyp1a2 które zamieszane są w aptogenezę AMD podobną retinopatię. 684)ncbi.nlm.nih.gov/pubmed/25132985
  • W patofizjologię AMD zaangażowane są minerały takie jak cynk,miedź i żelazo. Są one ściśle związane z białkami i innymi molekułami w celu regulacji różnych struktur i/lub funkcji lub też w postaci nie związanej. Za wysoki poziom niezwiązanych/wolnych jonów metali może wywoływać efekt toksyczny i aby ochronić komórki siatkówki przed tą toksycznością, prawidłowo muszą działać różne transportery metali, chaperony czy też obecność molekół składujących które ściśle przylegają do tych metali po to ,aby nie tworzyły one toksyczności. Jako że akumulacja żelaza w siatkówce związana jest z wiekiem i patogenezą AMD, sugeruje się, że chelatory żelaza i/lub cynku mogą pomóc w przypadku tej choroby. 685)ncbi.nlm.nih.gov/pubmed/24160731
  • Nikotynamid hamuje powstawanie druz, czynników zapalnych w tym i aktywacji dopełniacza. 686)ncbi.nlm.nih.gov/pubmed/28132833
  • Likopen(substancja zawarta w pomidorach) redukuje przyleganie monocytów oraz zniszczenia wywołane przez H2O2 w komórkach nabłonka pigmentu siatkówki. Ponadto hamuje ICAM-1 oraz NFkappaB jak i także stymuluje enzym Nrf2 i zwiększa wewnątrzkomórkowy glutation. 687)ncbi.nlm.nih.gov/pubmed/27155396
  • Suplementacja NAD+ hamuje stres oksydacyjny wywołany przez H2O2 i chroni komórki nabłonka pigmentu siatkówki przed śmiercią poprzez podniesienie statusu autofagii. 688)ncbi.nlm.nih.gov/pubmed/27240523
  • Flawony z rokitnika zwyczajnego(Hippophae rhamnoides) chronią komórki zwojowe siatkówki przed stresem oksydacyjnym,stanami zapalnymi, apoptozą i nadmierną angiogenezą powstałą przez ekspozycję na światło. Mało jest tak różnorodnie działających substancji ,wspierających leczenie AMD. 689)ncbi.nlm.nih.gov/pubmed/26653970
  • Zwiększenie wytwarzania cytokiny przeciwzapalnej IL-10 przez makrofagi zmniejsza wielkość neowaskularyzacji plamki żółtej. 690)ncbi.nlm.nih.gov/pubmed/22802947
  • Allicyna(substancja zawarta w czosnku) obniża poziomy wolnych rodników i malondialdehydu (MDA) oraz zwiększa proporcję glutationu GSH do disarczku glutationu GSSG. Ponadto zwiększa aktywność enzymu Nrf2 w komórkach nabłonka pigmentu siatkówki. 691)ncbi.nlm.nih.gov/pubmed/26781848
  • Kwercetyna obniża poziomy prozapalnych cytokin IL-6,IL-8 i MCP-1. Polepsza integralność ściany komórkowej i funkcje mitochondriów. 692)ncbi.nlm.nih.gov/pubmed/25662315
  • Kwercetyna chroni komórki nabłonka pigmentu siatkówki przez stresem oksydacyjnym poprzez aktywację ścieżki Nrf2, ponadto zapobiega śmierci komórkowej i chroni przed stresem retikulum endoplazmatyczne. 693)ncbi.nlm.nih.gov/pubmed/28713895
  • Przypadek człowieka, który miał zmiany druzowe, które normalnie występują w AMD, na które pomogła suplementacją witaminą A (20tys dziennie przez miesiąc). 694)ncbi.nlm.nih.gov/pubmed/23900584
  • Galantamina to substancja którą można kupic w formie suplementu, która chroni przed peptydem ameloidu beta, glutaminianem, nadtlenek wodoru, zaburzeniami glukozy i gospodarki tlenem. 695)ncbi.nlm.nih.gov/pubmed/23834167
  • Artemesinina chroni komórki nabłonka pigmentu siatkówki przed stresem oksydacyjnym poprzez aktywację ścieżki sygnałowej ERK/cREB. 696)ncbi.nlm.nih.gov/pubmed/27372058
  • SkQ1(pochodna koenzymu Q10) hamuje degenerację fotoreceptorów, polepsza krążenie krwii w siatkówce, przywraca prawidłową ekspresję Alfa B krystaliny a białko te (jego zaburzenia) zaangażowane są w patofizjologię AMD(jeśli działa prawidłowo chroni komórki nabłonka pigmentu siatkówki przed stresem oksydacyjnym, są modulatorem angiogenezy i czynnika VEGF). 697)ncbi.nlm.nih.gov/pubmed/25483086698)ncbi.nlm.nih.gov/pubmed/26026469
  • Selernica(Cnidium officinale) to roślina, która zawiera w sobie substancje o nazwie butylidepenephthalide. Wykazuje ona działanie antyangiogenne w komórkach siatkówki w której doszło do neowaskularyzacji (hamuje ekspresje AREG, ANG, DLL4 i VEGF). 699)ncbi.nlm.nih.gov/pubmed/27435599
  • Kwercetyna i cyjanidin-3-glucoside to substancje, które chronią przed tworzeniem się produktów końcowych glikacji. Polifenole te chronią również przed spadkami glutationu(związanym z fotoutlenianiem się A2E) chroniąc tym samym siatkówkę przed stresem fotooksydacyjnym. 700)ncbi.nlm.nih.gov/pubmed/28461203
  • Ginkgo biloba wykazuje działanie przeciw zlepianiu się płytek krwii oraz antyoksydacyjne. Polepsza mikrokrążenie w mózgu i tym samym może to zrobić w gałce ocznej. Przeciwdziała niedotlenienieniu. Wszystkie te właściwości mogą być przydatne w leczeniu suchej odmiany AMD. 701)ncbi.nlm.nih.gov/pubmed/10807109702)ncbi.nlm.nih.gov/pubmed/12244891. Inne badania potwierdzają , że zioło te wykazuje poprawę widzenia w AMD (240mg dziennie) brany przez minimum 6 miesięcy. 703)ncbi.nlm.nih.gov/pubmed/23440785. Bardzo możliwe, że dzieje się to poprzez obniżanie poziomów HIF-1 alfa i VEGF w komórkach nabłonka pigmentu siatkówki. 704)ncbi.nlm.nih.gov/pubmed/23790153Myslę, że powinno się nadać w suchej postaci tej choroby,w Alzheimerze polepsza stan zdrowia pacjentów). 705)ncbi.nlm.nih.gov/pubmed/16400219Wykazano, że u osób z AMD w tętnicach siatkówki jest zmniejszony przepływ krwi. 706)ncbi.nlm.nih.gov/pubmed/24147793 Ginkgo Biloba czy winpocetyna(vinpocetine) mogą w tym przypadku pomóc polepszając cyrkulację krwii stąd też przytaczam badania nad tym ziółkiem.
  • W siatkówce są najwyższe poziomy tauryny(aminokwasu) w organizmie. U kotów, kiedy dochodzi do uszczuplenia się jej zapasów, zaczyna się proces degeneracyjny fotoreceptorów prowadzący do permanentnej degeneracji siatkówki. Ponadto tauryna reguluje poziomy wewnątrzkomórkowego wapnia którego nadmiar doprowadza do śmierci komórkowej. 707)archive.foundationalmedicinereview.com/publications/3/2/128.pdf Ponadto hamuje on stres retikulum endoplazmatycznego, autofagię i apoptozę komórek nabłonka pigmentu siatkówki poprzez modulację aktywności genów calpain-1 i calpain-2. 708)ncbi.nlm.nih.gov/pubmed/29036897 Inne badanie potwierdza, że Niskie poziomy aminokwasu tauryny związane są z degeneracją siatkówki(tauryna między innymi stabilizuje ściany komórkowe). 709)ncbi.nlm.nih.gov/pubmed/9577248
  • Alfa mangostin to substancja zawarta w owocu mangostanu(czy też w drzewie). Stymuluje ona dysmutazę nadtlenkową SOD, peroksydazę glutationową GPx oraz Glutation GSH zarówno in vitro jak i in vivo. Powoduje ona także akumulację enzymu Nrf2 oraz pobudza oksygenazę hemową (HO-1) i reguluje ścieżki sygnałowe MAPK,ERK1/2,JNK i P38 chroniąc dzięki temu wzrok w AMD. 710)ncbi.nlm.nih.gov/pubmed/26888416
  • Ziołowa formuła chińska o nazwie Guibi-Tang redukuje angiogenezę (czynnik VEGF), czynnik wzrostu fibroblastów FGF2 oraz inhibitor aktywacji plazminogenu PAI-1. 711)ncbi.nlm.nih.gov/pubmed/26694358
  • Borówki zwiększają enzymy antyoksydacyjne(SOD,GPx,Katalazę) oraz obniżają MDA w komórkach siatkówki. Ponadto hamują podwyższenie się poziomów cytokin zapalnych aktywowanych światłem oraz hamują angiogenezę(IL-1b i VEGF). Ponadto hamują peroksydację lipidów co ma b.duże znaczenie w AMD. 712)ncbi.nlm.nih.gov/pubmed/26694327
  • Antagoniści receptora P2X7(amyloid beta wpływając na ten receptor pobudza kaspazy doprowadzające do śmierci komórkowej) – wraz z omega 3 chronią przed toksycznością amyloidu beta 713)ncbi.nlm.nih.gov/pubmed/26467741
  • Kwercetyna obniża poziomy prozapalnych cytokin IL-6,IL-8 i MCP-1. Polepsza integralność ściany komórkowej i funkcje mitochondriów. 714)ncbi.nlm.nih.gov/pubmed/25662315
  • Vinpocetine(Winpocetyna) to substancja która występuje w ziołach ale i też można ją zakupić w postaci suplementu diety, która hamuje aktywowany przez amyloid beta czynnik transkrypcyjny NF-kB(wzburza stany zapalne) oraz inflammasomy NLRP3 jak i produkcję cytokin zapalnych(IL-1b i IL-18) przez komórki nabłonka pigmentu siatkówkę. Dodam, że pobudza on także mikrokrążenie w mózgu także powinien być bardzo dobrym wsparciem w przypadku suchej odmiany AMD. 715)ncbi.nlm.nih.gov/pubmed/25041941
  • Restrykcja kaloryczna polepsza wytwarzanie się łez i tym samym niweluje zespół suchego oka(wytwarzanie łez spada z wiekiem) który powoduje stany zapalne. Restrykcja kaloryczna zmniejsza odkładanie się lipofuscyny w komórkach nabłonka pigmentu siatkówki, redukuje śmierć komórek fotoreceptorów, redukuje spadek glutationu i tioli, tauryny i kwasu askorbinowego w siatkówce oka. Ponadto ograniczenie spożywania kalorii w każdym posiłku chroni utratę komórek zwojowych. 716)sciencedirect.com/science/article/pii/S0531556513001009?via%3Dihub . Powoduje zwiększone wydzielanie się łez co zwalcza ewentualny syndrom suchego oka, hamuje skracanie się telomerów w komórkach nabłonka soczewki oka, polepsza aktywość alfa krystaliny, obniża odkładanie się beta i gamma krystaliny,redukuje spadek thioli, glutationu, kwasu askrobinowego i tauryny, hamuje utratę komórek zwojowych siatkówki. 717)sci-hub.hk/10.1016/j.exger.2013.04.002
  • Mimetykami restrykcji kalorycznej(czyli czymś co ją naśladuje) są(tzn.sugeruje się, że mogą być) kwas ALA, astaksantyna, laktoferyna(która to też zapobiega zespołowi suchego oka poprzez zwiększenie wytwarzania łez 718)Dogru et al., 2007;719)]Kawashima et al., 2012 czy też zmniejsza czynnik VEGF 720)ncbi.nlm.nih.gov/pubmed/17071598/), EPA, luteina czy też syntetyki takie jak rapamacyna czy metformina 721)sciencedirect.com/science/article/pii/S0531556513001009?via%3Dihub
  • Apigenina to substancja zawarta w Bluszczyku(Glechoma longituba) jak i także w formie suplementu diety. Hamuje ona apoptozę fotoreceptorów, stres oksydacyjny, aktywację mikrogleju i aktywację genów prozapalnych w przypadku oka na które oddziałuje światło. 722)ncbi.nlm.nih.gov/pubmed/28336272
  • Skrzydlik(pterygium) jest to choroba oka która zwiększa ryzyko AMD 2-3 krotnie 723)ncbi.nlm.nih.gov/pubmed/15767067
  • Sulforafan to substancja zawarta w kiełkach brokuł, która chroni komórki nabłonka pigmentu siatkówki przed fotooksydacyjnym uszkodzeniem(pobudza gen Nrf2 i zwiększa glutation). 724)ncbi.nlm.nih.gov/pubmed/15229324
  • Korzeń piwoni oraz Lukrecja uralska hamują czynnik VEGF, przeciek z naczyń krwionośnych siatkówki oraz neowaskularyzację naczyniówki. 725)ncbi.nlm.nih.gov/pubmed/29234364
  • paeoniflorin to substancja zawarta w Piwoni. Chroni ona komórki nabłonka pigmentu siatkówki przed śmiercią spowodowaną H2O2. Hamuje także stres oksydacyjny i aktywność kaspazy-3. Sugeruje się wykorzystanie tej substancji w leczeniu chorób oczu w tym i AMD. 726)ncbi.nlm.nih.gov/pubmed/22219646
  • Artemesinia – zioło stosowane z dobrą skutecznością na malarię poprzez wpływ na ścieżkę sygnałową MAPK, NF-kB i PI3K hamuje wykazuje antyangiogenne działanie w AMD 727)ncbi.nlm.nih.gov/pubmed/28765885
  • L-karnozyna(produkt o nazwie Can-C) w postaci kropli do oka może hamować peroksydację lipidów, ma działanie antyoksydacyjne i zapobiega glikacji, polepsza widzenie w zaćmie, w zamazanym widzeniu, syndromie suchego oka czy też w chorobach siatkówki. 728)sci-hub.hk/10.1002/dta.265
  • Winpocetyna nie tylko pobudza mikrocyrkulacje w mózgu ale i również hamuje NF-kappaB pobudzone przez amyloid beta,NLRP3 oraz cytokiny zapalne 729)ncbi.nlm.nih.gov/pubmed/25041941/
  • Cremastranone to homoizoflawon który może zatrzymać angiogenezę(bez aktywowania apoptozy komórek) w przypadku mokrej postaci AMD 730)ncbi.nlm.nih.gov/pubmed/26035340
  • Cremastra appendiculata to roślina która zawiera w sobie homoizoflawanon (homoisoflavanone – , 5,7-dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-6-methoxychroman-4-one) – inhibitor angiogenezy w neowaskularyzacji siatkówki. 731)sci-hub.hk/10.1016/j.bbrc.2007.08.100
  • Klon mono (ekstrakt z liści), kora cynamonowca japońskiego, rdestowiec sachalinski, Eurya japonica liście, Adenophora racemosa, barbula szara(Caryopteris incana) czy też cytryniec chiński(Schisandra chinensis) hamują angiogenezę poprzez zahamowanie VEGF. 732)ncbi.nlm.nih.gov/pmc/articles/PMC3736538/
  • Suplementacja NAD+ może pomóc w dysfunkcjach komórek nabłonka pigmentu siatkówki poprzez ochronę redukcyjnej karboksylacji jak i samych komórek pigmentu przed stresem oksydacyjnym. 733)ncbi.nlm.nih.gov/pubmed/27911769
  • Żeń szeń panax(Panax ginseng) hamuje TNF alfa i działa neuroprotekcyjnie. Koreański czerwony żeń szeń polepsza przepływ krwi w oku. Redukuje stres oksydacyjny w oku. Dan shen z kolei polepsza transport krwi i tlenu, może pomóc w wyregulowaniu cukru we krwi, chroni komórki zwojowe siatkówki. Hamuje NF kappa beta. 734)ncbi.nlm.nih.gov/pmc/articles/PMC3703386/
  • Płyn lugola jak i zastrzyki z jodu bezpośrednio do oka lub podskórne wykazują znaczącą poprawę wzroku w AMD – wręcz rewelacyjną bym powiedział. Zaprzestanie kuracji powoduje jego pogorszenie się (tj. postęp choroby). Jest to dokument z lat 40stych ubiegłego wieku… 735)ncbi.nlm.nih.gov/pmc/articles/PMC1315147/?page=11

  • Puerarin to substancja zawarta w korzeniu Kudzu. Roślina ta znana jest w Chinach od pokoleń i używana do leczenia AMD. Wykazano, że substancja z korzenia tej rośliny aktywuje ścieżkę antyoksydacyjną NRf2/HO-1 i hamuje peroksydację lipidów, aktywację przez amyloid beta inflammasomów NLRP3 oraz estres retikulum endoplazmatycznego 736)ncbi.nlm.nih.gov/pubmed/28583762
  • Wykazano,że dochodzi do uszkodzeń mitochondriów komórkowych w siatkówce osób z AMD,zatem ich wsparcie różnymi preparatami(polecam koenzym q10,mitoq czy też PQQ) może przynieść pozytywny efekt. 737)ncbi.nlm.nih.gov/pmc/articles/PMC4420790/
  • Jakiś czas temu zaproponowano, że pobudzenie telomerazy(enzymu przedłużającego żywotność komórek) może ochronić wzrok w suchej postaci AMD. Astragalus to roślina, która zawiera substancję zdolną do takich rzeczy. Wykazano, że jest ona w stanie pobudzić telomerazę na tyle, że funkcje komórek nabłonka pigmentu siatkówki ulegaja poprawie. 738)ncbi.nlm.nih.gov/pmc/articles/PMC4734847/
  • Promienie UVB pobudzają cytokinę IL-6/STAT3 i regulują komplement B(CFB). Kwas garbnikowy/taninowy występujący w wielu ziołach to polifenol mający przeciwzapalne właściwości. Hamuje produkcję cytokiny zapalnej IL-6 przez promienie UVB, fosforylację STAT3 oraz ekspresję CFB zatem wiele ziół będzie chronić twoje oczy przed czynnikami pobudzającymi stan zapalny, spowodowany przez promienie słoneczne UVB. Jedyne na co bym zwrócił uwagę to na fakt, że garbniki w nadmiarze powodują zaparcia. 739)ncbi.nlm.nih.gov/pubmed/22169226740)
  • Czynnik transkrypcyjny NRF2 (pobudzony) zwiększa grubość siatkówki(jeśli jest ona uszkodzona/spłycona) i regeneruje po ekspozycji na światło. 740)ncbi.nlm.nih.gov/pubmed/28253482
  • W przypadku AMD zaburzone jest funkcjonowanie genu Nrf2 który odpowiada między innymi za funkcje detoksykacyjne 741)ncbi.nlm.nih.gov/pubmed/24440594 .
  • Myszy z niedoborem NRF2 zapadają na AMD ,a rozregulowany proces autofagii jest związany z dodatkowym stresem oksydacyjnym i stanem zapalnym. 742)ncbi.nlm.nih.gov/pubmed/21559389 Ponadto myszy bez genu Nrf2 chorują na AMD wraz z formowaniem się druz, lipofuscyny i złogów podsiatkówkowych. 743)ncbi.nlm.nih.gov/pubmed/28782506. Enzym i gen Nrf2 chronią komórki fotoreceptorów przed stresem oksydacyjnym wywołanym przez niebieskie światło. Sugeruje się, że Nrf2 wykazuje działanie neuroprotekcyjne dla fotoreceptorów w AMD. Należy więc je wspierać(suplementami i dietą). 744)ncbi.nlm.nih.gov/pubmed/27923559 Nrf2 chroni także przed rozregulowaną wrodzoną odpowiedzią immunologiczną. Zwiększa enzymy drugiej fazy detoksu zaangażowane w syntezę i utrzymanie odpowiedniego poziomu glutationu 745)ncbi.nlm.nih.gov/pubmed/16723490/. Nrf2 reguluje takżę układ dopełniacza. Brak Nrf2 zwiększa odkładanie się białka dopełniacza C3 w różnych organach w tym i w mózgu oraz zwiększa stres oksydacyjny. W przypadku palenia papierosów w membranie Brucha znaleziono białka dopełniacza C3 i C5 oraz komponent MAC. Kwas ALA jest aktywatorem Nrf2 tak jak też sulfarafan z brokułów. 746)ncbi.nlm.nih.gov/pmc/articles/PMC3575185/
  • EGCG to polifenol zawarty w zielonej herbacie. Przywraca on homeostazę wapnia Ca2+ poprzez obniżenie produkcji wolnych rodników i zahamowanie prohibitiny1 która reguluje poprawne funkcjonowanie retikulum endoplazmatycznego oraz zapobiega apoptozie komórek. 747)ncbi.nlm.nih.gov/pubmed/27778132, hamuje nadmiernie pobudzoną metaloproteinazę 9 (MMP-9) oraz VEGF748)ncbi.nlm.nih.gov/pubmed/25123184, chroni przed toksycznym działaniem promieni UVB na komórki nabłonka pigmentu siatkówki poprzez regulację autofagii w oku. 749)ncbi.nlm.nih.gov/pubmed/23916613. Hamuje uszkodzenia siatkówki spowodowane promieniowanem UVB także poprzez zahamowanie obniżenia fosforylacji ścieżki sygnałowej JNK1 i c-Jun). JNK1 to ścieżka sygnałowa, która w AMD hamuje śmierć komórek nabłonka pigmentu siatkówki. 750)ncbi.nlm.nih.gov/pubmed/21909619. Promieniowanie UVA zwiększa produkcje H2O2, a jego nadmiar prowadzi do śmierci komórek nabłonka pigmentu siatkówki oka co jest też związane z nadmiarem wapnia. Komórki te przed śmiercią wywołaną przez h2o2 chroni np.polifenol zawarty w zielonej herbacie – EGCG 751)ncbi.nlm.nih.gov/pubmed/21112485752)ncbi.nlm.nih.gov/pubmed/24559018Hamuje także cyklooksygenazę COX-2 która powstaje w procesie nadmiaru produkcji h2o2(COX-2 hamuje również np.aspiryna). 753)ncbi.nlm.nih.gov/pubmed/19119326
  • Amyloid beta uruchamia układ dopełniacza w Alzheimerze. Należy założyć, że w AMD dzieje się to samo(bazując na wielu badaniach). W tym badaniu na przykład stwierdza się, że amyloid beta związany jest z powstawaniem druz jak i też właśnie z aktywacją układu dopepłniacza przyczyniając się do stanów zapalnych(lokalnych) i do atrofi nabłonka pigmentu siatkówki w AMD. 754)ncbi.nlm.nih.gov/pubmed/12189211
  • Cholesterol aktywuje sfingomyelinazę(ASMase) która odpowiada między innymi za zahamowanie autofagii w komórkach nabłonka pigmentu siatkówki. 755)ncbi.nlm.nih.gov/pubmed/25378587
  • Wysokie ciśnienie, miażdżyca i mokra postać AMD – wszystkie 3 schorzenia są ze sobą ściśle związane, wszystkie 3 nasilają się zimą a polepsza się (osobom z takimi schorzeniami) latem – zbieg okoliczności?nie!to zapewne witamina d3 która polepsza stan zdrowia każdej osoby z tymi schorzeniami. 756)sci-hub.tv/10.1111/j.1755-3768.2010.01989.x . Zresztą, kobiety które mają jej bardzo niskie poziomy mają prawie 7krotnie wyższe ryzyko zachorowania na AMD 757)ncbi.nlm.nih.gov/pmc/articles/PMC5129901/
  • Kwas retinolowy zwiększa aktywność VEGF w komórkach nabłonka pigmentu siatkówki i lepiej go unikać w mokrej postaci AMD (zatem spożywanie witaminy A lepiej ograniczyć do minimum) 758)ncbi.nlm.nih.gov/pubmed/25576666
  • Taksofilina(substancja występująca w wielu ziołach) pobudza enzym NRF2 oraz enzymy drugiej fazy detoksu (NQO1, HO-1, GCLM, GCLC) chroniąć tym samym komórki nabłonka pigmentu siatkówki przed śmiercią i stresem oksydacyjnym. 759)ncbi.nlm.nih.gov/pubmed/28761325
  • W mokrym typie AMD cyotkina zapalna IL-1beta jest zwiększona. Sugeruje się, że może odgrywać rolę w degeneracji fotoreceptorów i neowaskularyzacji. także warto spróbować ją zahamować(inne badania potwierdzają to przypuszczenie760)ncbi.nlm.nih.gov/pubmed/25978536
  • Hiperosmotyczność (czyli nadciśnienie spowodowane za dużą ilością podaży soli w diecie) prowadzi do pobudzenia czynników VEGF-A,VEGF-B,VEGF-D czy też PIGF-2. Sugeruje się, że nadmiar soli w diecie prowadzi do procesów angiogenezy w komórkach nabłonka pigmentu siatkówki (w środowisku niedotleneinia) poprzez aktywację genów z rodziny VEGF. 761)ncbi.nlm.nih.gov/pubmed/27230578
  • Wykazano, że kiedy dochodzi do zmian w strukturze nabłonka barwnikowego oraz membranie Brucha powstaje niedobór retinoidu – suplementacja witaminą A polepsza w tym przypadku przystosowanie się wzroku do adaptację w ciemności. 762)ncbi.nlm.nih.gov/pubmed/16565362
  • Żelazo w AMD gromadzi się w druzach i fotoreceptorach prowadząc do stresu oksydacyjnego. Ponadto zaburzenia działania ceruloplazminy powodują degenerację siatkówki w tym i neowaskularyzację podsiatkówki oraz akumulację lipofuscyny. Sugeruje się użycie chelatorów żelaza w celu redukcji postępowania choroby. 763)ncbi.nlm.nih.gov/pubmed/17065470
  • Oksydacja/utlnienianie A2E to jeden z głównych problemów w AMD. Kwercytyna bardzo dobrze sobie z tym problemem poradziła.(kurkumina czy resweratrol nie dają sobie z tym rady) 764)ncbi.nlm.nih.gov/pmc/articles/PMC4069254/
  • Ketony także powodują zniszczenia w AMD także dieta tłuszczowa raczej odpada. 765)ncbi.nlm.nih.gov/pmc/articles/PMC5757825/
  • Kwas ALA dostępny w postaci suplementu diety polepsza wzrok w suchej odmianie AMD (ma to związek prawdopodobnie z jego działaniem antyoksydacyjnym, zwiększa między innymi poziomy SOD-dysmutazy nadtlenkowej). 766)ncbi.nlm.nih.gov/pubmed/27840374
  • Isorhamnetin to metabolit kwercytyny który chroni komórki nabłonka pigmentu siatkówki przed stresem oksydacyjnym (poprzez wpływ na ścieżkę Pl3K/Akt). 767)ncbi.nlm.nih.gov/pubmed/29115489

 

 

Zwyrodnienie plamki żółtej (AMD) a melatonina

Niskie poziomy melatoniny są czynnikiem ryzyka w AMD. 768)ncbi.nlm.nih.gov/pubmed/27831657. Potwierdzono, że poziomy melatoniny są o 40% niższe u osób z AMD w porównaniu do osób zdrowych. 769)ncbi.nlm.nih.gov/pubmed/19710945.

 

Melatonina to neurohormon, który pełni funkcje antyoksydacyjne w komórkach fotoreceptorowych siatkówki. Obniża peroksydację lipidów kwasów wielonienasyconych. 770)ncbi.nlm.nih.gov/pubmed/10231733/771)ncbi.nlm.nih.gov/pubmed/14521634/. Obniża peroksydację lipidów wywołaną przez tlenek azotu NO. oraz może zniszczenia powstałe podczas niedokrwienia. 772)ncbi.nlm.nih.gov/pubmed/10496149/773)ncbi.nlm.nih.gov/pubmed/12022289/, chroni siatkówkę podczas urazów niedokrwinno-reperfuzyjnych. 774)ncbi.nlm.nih.gov/pubmed/12510712, obniża aktywność genów CYP1A2 i CYP1B1 w modelu zwierzęcym AMD. 775)ncbi.nlm.nih.gov/pubmed/25110076chroni komórki nabłonka pigmentu siatkówki przed stresem oksydacyjnym i kontroluje pigmentację jak i również reguluje ilość światła dochodzącego do fotoreceptorów. Chronią komórki nabłonka pigmentu siatkówki przed wolnymi rodnikami pobudzonymi przez niebieskie światło oraz przed kaspazą 3 i 9(czyli przed śmiercią komórkową) związaną ze zwiększeniem się poziomów wapnia Ca(2+). 776)ncbi.nlm.nih.gov/pubmed/24603419Z wiekiem poziomy tego hormonu maleją co może być ważnym czynnikiem w dysfunkcji komórek nabłonka pigmentu siatkówku. Wykazano, że po 6 miesiącach większość ze 100 osobowej grupy z AMD zanotowała zredukowane zmiany patologiczne plamki żółtej. Dawka 3mg melatoniny – hormon ten chroni zatem siatkówkę i opóźnia zwyrodnienie plamki żółtej. 777)ncbi.nlm.nih.gov/pubmed/16399908

 

Bariera krew-siatkówka składa się z komponentu wewnętrznego i zewnętrznego. Wewnętrzny(iBRB) to połączenia ścisłe(białka) sąsiadujące z kapilarnymi komórkami śródbłonka siatkówki, zewnętrzna to z kolei połączenia ścisłe między komórkami nabłonka barwnikowego siatkówki. Astrocyty, komórki Mullera czy pericyty przyczyniają się do prawidłowego funkcjonowania wewnętrznej powłoki krew-siatkówka. (iBRB). W takich stanach jak choroby układu oddechowego, niedotlenienie siatkówki czy niedrożności żył siatkówki dochodzi do rozpadu wewnętrznej części bariery krew-siatkówka. Takie uszkodzenie prowadzi do zwiększonej przepuszczalności naczyń krwionośnych, obrzęku i uszkodzenia tkanki co przekłada się na pogorszenie widzenia. Następuje zwiększona produkcja czynnika VEGF,tlenku azotu NO, pojawia się wzmożony stres oksydacyjny i stan zapalny – zahamowanie tych czynników jest korzystne w tym stanie. Melatonina pełni funkcje ochronne w warunkach niedotlenienia tej warstwy bariery. 778)ncbi.nlm.nih.gov/pubmed/18940262. Odwraca proces hamowania syntezy telomerazy przez stres oksydacyjny. Jest też efektywna w przypadku peroksydacji lipidów i ochrony przed nadtlenkiem wodoru oraz podnosi status enzymu Nrf2. W jednym z badań podawanie 3mg melatoniny przed snem w suchym jak i mokrym AMD przez 3 miesiące powodowało stabilizację ostrość widzenia. 779)ncbi.nlm.nih.gov/pubmed/16399908/. Należy pamiętać, że produkcja melatoniny spada z wiekiem. 780)ncbi.nlm.nih.gov/pubmed/21451205. W AMD dochodzi do zaburzeń autofagii – melatonina redukuje to zaburzenie hamując progresję tej choroby. 781)ncbi.nlm.nih.gov/pmc/articles/PMC5027321/. Blokuje NF-kB oraz geny prozapalne takie jak NOS(nNOS i iNOS) czy COX-2 oraz SIRT1(redukuje apoptozę i zwiększa poziomy enzymów antyoksydacyjnych takich jak SOD i katalaze). Ponadto oczyszcza z glutaminianu. 782)onlinelibrary.wiley.com/doi/full/10.1111/jpi.12430

 

W Alzheimerze wytwarzanie melatoniny jest zaburzone (zapewne poprzez spłycenie siatkówki, którą powinny chronić komórki zwojowe). 783)ncbi.nlm.nih.gov/pmc/articles/PMC3462291/W AMD dzieje się dokładnie to samo – osoby z pseudofakią i AMD wytwarzają wiecej melatoniny za dnia w porównaniu do osób z pseudofakią bez AMD. Stwierdzono, że prawdopodobnie u osób z AMD na skutek zmniejszonej ostrości widzenia, więcej światła dociera do fotoreceptorów przez co za dnia jest więcej wydzielane tego hormonu snu. 784)ncbi.nlm.nih.gov/pubmed/18494741

 

Suplementacja 3mg melatoniny dziennie może opóźnić progresję AMD (hormon ten chroni siatkówkę, zwłaszcza komórki zwojowe). 785)ncbi.nlm.nih.gov/pubmed/19710945/Co jeszcze powoduje melatonina w tej chorobie?chroni komórki nabłonka pigmentu siatkówki przed stresem oksydacyjnym. 786)ncbi.nlm.nih.gov/pubmed/15109913,może zaburzać fibrylinogenezę i agregację ameloidu beta działając tym samym antyneurotoksycznie oraz usuwa ten peptyd poprzez degradację proteolityczną. 787)ncbi.nlm.nih.gov/pmc/articles/PMC3939747/, zapobiega skróceniu się telomerów w komórkach nabłonka pigmentu siatkówki. 788)ncbi.nlm.nih.gov/pubmed/20884126, chroni przed H2O2, który niszczy nabłonek pigmentu siatkówki 789)ncbi.nlm.nih.gov/pubmed/22773902. W jednym badaniu wykazano, że  chroni siatkówkę oka oraz opóźnia zwyrodnienie plamki żółtej(nie ma skutków ubocznych). Ze 120 pacjentów którym podawano 3mg melatoniny(obydwie formy AMD tj.zarówno sucha jak i mokra) 55 zanotowało zatrzymanie progresji choroby. 790)ncbi.nlm.nih.gov/pubmed/16399908. Resweratrol z melatoniną działają synergicznie w przypadku nadmiernie wytwarzanego amyloidu beta. 791)ncbi.nlm.nih.gov/pubmed/20944813

 

Zwyrodnienie plamki żółtej (AMD) a witamina D3

Witamina D3 może przyczynić się do zatrzymania postępu choroby(chroni przed stanem zapalny, stresem oksydacyjnym i neowaskularyzacją) 792)sci-hub.hk/10.1111/j.1532-5415.2012.04015.x. Największe jej deficyty mają osoby z mokrą postacią choroby 793)ncbi.nlm.nih.gov/pubmed/24946100

  • Witamina D3 zapobiega lub opóźnia progresje choroby do jej najgorszej – zaawansowanej postaci. 794)ncbi.nlm.nih.gov/pubmed/28892825
  • Niedobór witaminy D3 związany jest ze zmniejszoną grubością kompleksu komórek zwojowych siatkówki (przed oczami mam właśnie stwardnienie rozsiane w którym jest z tym duży problem, hormon wzrostu który zapobiega utracie tych komórek i właśnie niedobory d3).795)ncbi.nlm.nih.gov/pubmed/26090872 (wręcz powoduje to spłycenie)796)ncbi.nlm.nih.gov/pubmed/26090872
  • Witamina D3 hamuje cytokiny zapalne, chroniczny stan zapalny, odkładanie się amyloidu beta ,metaloproteinazę 9 czy też czynnik VEGF no i naturalnie pełni funkcje antyoksydacyjną. Hamuje takżę aktywację makrofagów. Ponadto aktywuje fagocytozę amyloidu beta przez makrofagi i jego usunięcie z membrany Brucha. 797)ncbi.nlm.nih.gov/pmc/articles/PMC5691736/798)ncbi.nlm.nih.gov/pubmed/22217419
  • Niskie poziomy witaminy D3 są związane ze spłyceniem plamki żóltej. 799)ncbi.nlm.nih.gov/pubmed/25028353
  • Agoniści receptorów witaminy D3 – VDR (agoniści czyli coś co pobudza) mają działanie przeciwangiogennę. 800)ncbi.nlm.nih.gov/pubmed/28547797
  • Wysokie poziomy D3 mogą chronić kobiety przed wczesną postacią AMD(badanie na kobietach po menopauzie). 801)ncbi.nlm.nih.gov/pubmed/21482873
  • Witamina d3 obniża stany zapalne w siatkówce oka, redukuje poziomy amyloidu beta jak i również redukuje poziomy makrofagów w siatkówce które odpowiadają za stany zapalne w tym rejonie dzięki temu poprawiając stan wzroku.Udowodniono, że jej niskie poziomy przyczyniają się do AMD. Problem w tym że wg.naukowców z tego badania niskie stany to dopiero poniżej 20ng/ml – obecne standardy w chorobach autoimmunologicznych i neurologicznych to przedziały między 50-80ng/ml i do takich minimów powinno się dążyć. 802)ncbi.nlm.nih.gov/pubmed/22217419803)ncbi.nlm.nih.gov/pubmed/26312598 804)ncbi.nlm.nih.gov/pubmed/27105707805)ncbi.nlm.nih.gov/pubmed/17502506
  • Wysokie poziomy witaminy D3 chronią przed nadmiernym rozrostem naczyń krwionośnych i wykazują działanie przeciwzwłóknieniowe w AMD. 806)ncbi.nlm.nih.gov/pubmed/25015360

Wielotorowe działanie na wiele problemów występujących w AMD – witamina D3. Obszerny artykuł na jej temat można znaleźć tutaj ncbi.nlm.nih.gov/pmc/articles/PMC5691736/

 

Zwyrodnienie plamki żółtej (AMD) a cynk

  • Brak cynku w komórkach i jego nadmiar poza nimi (co promuje kumulowanie się amyloidu beta) może przyczyniać się do apoptozy neuronów w Alzheimerze – a to przecież pokrewna choroba do AMD. 807)ncbi.nlm.nih.gov/pubmed/9875267
  • Cynk zwiększa poziomy glutationu w komórkach nabłonka pigmentu siatkówki poprzez indukcję szlaku syntezy de novo w której pośredniczy ścieżka Nrf2. 808)ncbi.nlm.nih.gov/pubmed/16723490/
  • Suplementacja cynkiem przez 3miesiące obniża stosunek białek dopełniacza C3d/C3 we krwi (tylko u osób, u których te białka są naprawdę mocno aktywowane). 809)ncbi.nlm.nih.gov/pmc/articles/PMC3864379/
  • 50mg cynku dziennie skutecznie zapobiega katabolizmowi układu dopełniacza oraz odkładaniu się kompleksowi atakującemu membran (MAC – membrane attack complex) w komórkach nabłonka pigmentu siatkówki. 810)ncbi.nlm.nih.gov/pubmed/25393287
  • Cynk redukuje produkcję wolnych rodników, przywraca produkcję ATP, redukuje stres oksydacyjny, chroni komórki nabłonka pigmentu siatkówki oraz zapobiega uszkodzeń lizosomu.811)ncbi.nlm.nih.gov/pubmed/29348791
  • Cynk podnosi poziomy komponent H układu dopełniacza, apolipoproteiny E (APOE), zwiększa ilość komórek pigmentu polepszając tym samym stan komórek nabłonka pigmentu siatkówki. 812)ncbi.nlm.nih.gov/pubmed/29523386
  • Cynk wraz z olejem rozmarynowym lub proszkiem z rozmarynu zapewniają ochronę siatkówki przed światłem. 813)ncbi.nlm.nih.gov/pubmed/23825923
  • Kombinacja takich suplementów jak cynk, kwas karnozynowy, ekstrakt z pomidora wykazują działanie przeciwzapalne i aktywują geny antyoksydacyjne(HMOX1 i SOD) oraz obniżają aktywność genów proangiogennych i prozapalnych takich jak SDF-1, TNF-alfa,IL-6 i MCP-1. Stosowanie Samej luteiny lub luteiny z cynkiem przynoszą znacznie gorsze efekty. 814)ncbi.nlm.nih.gov/pubmed/29259394
  • Mangan i Cynk chronią przed akumulacją kadmu w komórkach plamki żółtej. 815)ncbi.nlm.nih.gov/pubmed/18948096
  • Odpowiednio wysoki poziom cynku przeciwdziała ślepocie w suchej postaci choroby (w 25% przypadków)(działa przeciwzapalnie hamując cytokiny zapalne TNF alfa i IL-1beta i antyoksydacyjnie). 816)ncbi.nlm.nih.gov/pubmed/20150599 817)ncbi.nlm.nih.gov/pubmed/19710611
  • Cynk zwiększa poziomy glutationu(GSH) w komórkach nabłonka pigmentu siatkówki oraz pobudza ścieżkę detoksu i przeciwrodnikowką ARE-Nrf2 w AMD. 818)ncbi.nlm.nih.gov/pubmed/16723490
  • Spadek poziomu cynku(jego wypłukanie z komórek) w komórkach powoduje śmierć komórek siatkówki oka (zwiększa się poziom kaspaz które za to są odpowiedzialne). Niedobór cynku to jedna z możliwych, że tak powiem dodatkowych przyczyn powstawania AMD. 819)ncbi.nlm.nih.gov/pubmed/10865057
  • Sugeruje się niedobory zarówno cynku jak i miedzi przez które komórki nabłonka pigmentu siatkówki oka są bardziej podatne na uszkodzenia spowodowane światłem UV. 820)ncbi.nlm.nih.gov/pubmed/11157883
  • Cynk jest komponentem dysmutazy nadtlenkowej CuZnSOD i katalazy oraz aktywuje metalotioniny – białko które chroni przed stresem oksydacyjnym oraz wchodzi w interakcję z dehydrogenazą retinolu która uczestniczy w regeneracji retinolu w cyklu wzrokowym(VISUAL CYCLE) 821)(Tate et al. 1997; Sato and Bremner 1993)
  • Cynk przyczynia się do rozwoju pigmentu w siatkówce oka oraz zmniejsza postępowanie zaawansowanego zwyrodnienia plamki żółtej. 822)ncbi.nlm.nih.gov/pubmed/23661701
  • Cynk poprzez wpływ na ścieżkę ARE-Nrf2 powoduje zwiększenie obrony antyoksydacyjnej i polepsza detoks(lepsza synteza glutationu) co przyczynia się do polepszenia zdrowia w przypadku AMD. 823)ncbi.nlm.nih.gov/pubmed/16723490
  • Transportery cynku ZIP2 i ZIP4 są zredukowane z wiekiem w komórkach nabłonka pigmentu siatkówki co skutkuje mniejszą ilością tego mineralu w tym regionie. 824)ncbi.nlm.nih.gov/pubmed/21603979
  • Akumulacja cholesterolu i jego złogów powoduje zwiększone zapotrzebowanie na cynk który może w tym wypadku działać protekcyjnie na komórki nabłonka pigmentu siatkówki. 825)ncbi.nlm.nih.gov/pubmed/28003730
  • W siatkówce osób starszych poziomy cynku i miedzi są niskie i ma to związek z akumulacją kadmu w organizmie. 826)ncbi.nlm.nih.gov/pubmed/18579132
  • Kadm może zaburzać transport cynku poprzez przyleganie do białek transportujących ten pierwszy minerał. Kadm zatem może wypłukiwać cynk z siatkówki oka. Ponadto sam kadm jest cytotoksyczny dla komórek siatkówki 827)Girijashanker et al. 2008 828)ncbi.nlm.nih.gov/pubmed/17967453
  • Jeśli w organizmie jest za dużo kadmu,poziom cynku spada oraz zaburzane są funkcje tego minerału jak i też zaburzona jest jego absorbcja z pożywienia czy suplementów. 829)ncbi.nlm.nih.gov/pubmed/7935085
  • Suplementacja cynkiem przez 2 lata po 80mg/dzień chroni wzrok przed utratą ostrości widzenia. 830)Newsome et al. 1988
  • Z wiekiem spada poziom cynku(przynajmniej u mężczyzn) oraz mniejsze są ilości transporterów cynku w komórkach nabłonka pigmentu siatkówki – ZIP2 i ZIP4. Ponadto w AMD poziomy w/w transporterów są obniżone i sugeruje się, że może dziać się to ze względu na toczący się proces zapalny. Ponadto cynk reguluje otwieranie i zamykanie kanałów wapniowych jak i również sodowych, potasowych czy też chlorkowych. 831)sci-hub.hk/10.1039/c3mt00291h
  • Niedobór cynku prowadzi do zwiększonego wytwarzania cytokiny zapalnej IL-1beta przez monocyty i makrofagi jak i takżę zwiększonej produkcji wolnych rodników. 832)sci-hub.hk/10.1016/j.jtemb.2012.04.004
  • Cynk zmniejsza utratę wzroku (badanie na osobach które suplementowały cynk vs Ci którzy tego nie robili). 833)sci-hub.tv/10.1016/j.nutres.2013.10.011
  • Cynk pobudza wytwarzanie glutationu, katalazy i SOD (enzymy antyoksydacyjne) oraz obniża enzymy promujące oksydację takie jak iNOS oraz oksydaza NADPH jak i także hamuje peroksydację lipidów. Znane jest także jego działanie regulacyjne enzym Nrf2(pobudza jego działanie). Jego brak podnosi generowanie cytokiny zapalnej w monocytach – IL-1beta. Sugeruje się, że jego brak podnosi aktywację cytokin zapalnych przez makrofagi i monocyty. 834)sci-hub.hk/10.1016/j.jtemb.2014.07.019
  • Cynk redukuje ryzyko AMD o 21% i utratę wzroku o 11% w przypadku AMD.835) sci-hub.hk/10.1016/j.jtemb.2014.09.002
  • Cynk hamuje stany zapalne i jest antyoksydantem – hamuje ślepotę w suchym typie AMD. 836)ncbi.nlm.nih.gov/pubmed/25260885

 

 

Zwyrodnienie plamki żółtej (AMD) a kwasy omega-3

  • Osoby z AMD mają zwiększone poziomy kwasu arachidonowego (a to wiąże się ze zwiększonym stanem zapalnym) oraz obniżone poziomy kwasu DHA (omega3). 837)ncbi.nlm.nih.gov/pubmed/26187344
  • Dioksyny to kolejny czynnik ryzyka (są w dymie papierosowym ale i nie tylko…np.w rybach,chociażby w niepewnych omega-3). Co ciekawe dioksyny zwiększają poziomy VEGF-A w siatkówce i komórkach nabłonka pigmentu siatkówki. Konieczna jest suplementacja tymi kwasami z pewnych czystych źródeł – ja osobiście polecam firme Nordic Naturals. 838)ncbi.nlm.nih.gov/pubmed/19182260
  • W komórkach nerwowych DHA(kwas z tłuszczy omega-3) hamuje wydzielanie się amyloidu beta oraz hamuje nadmierną aktywację genów antyapoptycznych kodujących białka Bcl-2, Bcl-xl oraz Bfl-1(a1) w mózgu ludzkim. 839)ncbi.nlm.nih.gov/pubmed/19520558
  • Intensywna ekspozycja oczu na światło obniża poziomy DHA w organizmie i powoduje dysregulację kwasu arachidonowego którego jest o 32% więcej u osób z AMD w porównaniu do osób zdrowych. 840)ncbi.nlm.nih.gov/pubmed/26187344
  • Omega 3 hamują metaloproteinazy 2 i 9 przyczyniając się tym samym do zachamowania neowaskularyzacji naczyniówki 841)ncbi.nlm.nih.gov/pmc/articles/PMC5539800/
  • Omega 3 polepszają gospodarkę wapnia w mitochondriach z którą jest problem w AMD a połączenie koenzymu Q10,omegi 3 i acetyl-l-karnityny polepsza wzrok w AMD w 4 różnych aspektach w sporym badaniu z grupą placebo. 842)sci-hub.hk/10.1159/000085248
  • DHA z Omega 3 pobudza autofagię niesfałdowanych białek co zmniejsza ryzyko AMD. 843)ncbi.nlm.nih.gov/pubmed/26237736
  • Omega 3 hamują VEGF 844)ncbi.nlm.nih.gov/pubmed/21307302
  • Omega 3 zmniejszają ryzyko AMD a jak już nawet do niego dojdzie to spowalniają postęp tej choroby 845)ncbi.nlm.nih.gov/pmc/articles/PMC4742947/
  • Omega 3 powodują polepszenie wzroku w AMD 846)karger.com/Article/FullText/343708 czy też redukują ryzko powstania tej choroby. 847)karger.com/Article/FullText/343708
  • Omega 3 mogą spowolnić postępowanie choroby (poprawiają też układ kardiologiczny,lekko obniżają ciśnienie, redukują problemy związane z zespołem suchego oka). 848)ncbi.nlm.nih.gov/pubmed/19227095
  • Omega 3 chronią przed zmianami patologicznymi w tej chorobie a nawet mogą je cofnąć(wysokie dawki). Kwasy te hamują metabolizm kwasu arachidonowego co obniża poziomy prostaglandyny E2 i leukotrienu B4(substancje wywołujące stan zapalny i ból) i zwiększają poziomy prostaglandyny D2(substancja przeciwzapalna). Ponadto zmniejszaja poziomy cytokin prozapalnych w oku (TNF alfa i IL-6). 849)ncbi.nlm.nih.gov/pubmed/19608872
  • Najlepszą poprawę widzenia notują osoby z AMD, które biorą 5-7.5grama DHA z EPA – a Ty ile bierzesz omega 3? 850)ncbi.nlm.nih.gov/pubmed/27125064
  • DHA i EPA(omega-3) spowalniają progresje AMD(wczesnego typu). 851)ncbi.nlm.nih.gov/pubmed/19508997
  • Omega 3 obniżają o 50% ryzyko zachorowania na mokrą postać zwyrodnienia plamki żółtej. 852)ncbi.nlm.nih.gov/pubmed/18689376
  • Wysokie spożycie Omega-3 i niskie kwasu linolowego zmniejsza ryzyko zachorowania na AMD 853)ncbi.nlm.nih.gov/pubmed/19433717
  • Kwasy omega 3 działają anty VEGF 854)ncbi.nlm.nih.gov/pubmed/21307302
  • Podejrzewa się, że niskie poziomy HDL mogą być niekorzystne w tej chorobie 855)ncbi.nlm.nih.gov/pubmed/24743813 Zwiększyć je mogą np.kwasy omega-3
  • Kwasy EPA(omega3) chronią siatkówkę przed uszkodzeniami wywołanymi przez światło. Sugeruje się, że spowalniają postęp choroby. 856)ncbi.nlm.nih.gov/pubmed/26042773
  • Polimorfizm genu CFHY402H (gen komponentu H systemu dopełniacza) zwiększa ryzyko AMD w populacji austriackiej. ncbi.nlm.nih.gov/pubmed/19169230 Inne badanie sugeruje, że suplementacja DHA(element omega-3) może pomóc w tak nie dogodnych predyspozycjach genetycznych. 857)ncbi.nlm.nih.gov/pubmed/26132079
  • W przypadku polimorfizmu genu CFH Y402H suplementacja DHA(z Omega3) wpływa ochronnie na AMD(na pojawianie się nowych naczyń naczyniówkowych). 858)ncbi.nlm.nih.gov/pubmed/26132079
  • Obniżenie spożywanego kwasu linolowego zwiększa dostępność omega-3 w siatkówce oka 859)ncbi.nlm.nih.gov/pubmed/21821023

 

 

Zwyrodnienie plamki żółtej (AMD) a luteina i zeaksantyna

  • Jedzenie szpinaku(który bogaty jest w luteine) zwiększa poziom tej substancji w pigmencie oka zwiększająć tym samym gęstość optyczną pigmentu siatkówki(wykazano to po 2 miesiącach zajadania się szpinakiem). 860)ncbi.nlm.nih.gov/pubmed/26950968
  • Zeaksantyna i luteina zwiększają grubość pigmentu plamki żółtej oraz czułość siatkówki we wczesnym AMD. 861)ncbi.nlm.nih.gov/pubmed/25228440
  • Luteina chroni przed niedokrwieniem siatkówki oraz hamuje nNOS(neuronalna syntaza tlenku azotu) oraz COX-2. 862)ncbi.nlm.nih.gov/pubmed/16631350
  • Suplementacja już tak niskimi dawkami luteiny jak 6mg poprawia funkcje wzroku (kontrast i czułość siatkówki) jednak nie powoduje ona(tak niska dawka) zwiększenia się pigmentu optycznego plamki żółtej ncbi.nlm.nih.gov/pubmed/21850440
  • Luteina może chronić przed miażdzycą(przeciwdziała gromadzeniu się cholesterolu) oraz posiada właściwości przeciwzapalne i antyoksydacyjne 863)ncbi.nlm.nih.gov/pubmed/21697302
  • Wyższe spożycie luteiny i zeaksantyny zmniejsza ryzyko mokrego typu AMD, geograficznej atrofii i druz. 864)ncbi.nlm.nih.gov/pubmed/17846363
  • Luteina aktywuje enzym Nrf2 w komórkach nabłonka pigmentu siatkówki oraz chroni przed toksycznością H2O2 865)ncbi.nlm.nih.gov/pubmed/28665123866)ncbi.nlm.nih.gov/pubmed/28656238
  • Luteina hamuje COX-2 i iNOS. 867)ncbi.nlm.nih.gov/pubmed/19437483
  • Luteina zwiększa gęstość optyczną pigmentu plamki żółtej. (20mg/dzień). 868)ncbi.nlm.nih.gov/pubmed/25815324
  • Luteina i zeaksantyna filtrują niebieskie światło chroniąc oko przed światłem niebieskim. 869)ncbi.nlm.nih.gov/pubmed/20027805
  • Luteina hamuje aktywność iNOS i COX-2 oraz hamuje NF-kB. 870)ncbi.nlm.nih.gov/pubmed/22465791
  • Luteina z zeaksantyną zwiększają gęstość optyczną pigmentu plamki żółtej w AMD (dawki minimum 10mg luteiny plus 10mg zeaksantyny) 871)ncbi.nlm.nih.gov/pubmed/25228440
  • Zeaksantyna i luteina zmniejszają ryzyko zapadnięcią na tą chorobę 872)ncbi.nlm.nih.gov/pubmed/24178404
  • Luteina redukuje peroksydację lipidów wywołaną przez promieniowanie UVB(które promuje postępowanie choroby) oraz hamuje śmierć komórkową jak i też przywraca aktywność enzymów antyoksydacyjnych. 873)ncbi.nlm.nih.gov/pubmed/23651647
  • Luteina hamuje NF-kB (zapalny czynnik transkrypcyjny) podniesiony na skutek lipopolisacharydu LPS(cząstka błony komórkowej bakterii gram ujemnych) czy też pdoniesionym na skutek cytokiny zapalnej TNF alfa. 874)ncbi.nlm.nih.gov/pmc/articles/PMC3824279/
  • Smażenie jajek jest znacznie gorsze niż gotowanie(smażenie znacznie zmniejsza biodostępność luteiny i zeaksantyny) – pamiętaj o tym dbająć o swój wzrok i jedząc jajka. 875)ncbi.nlm.nih.gov/pubmed/25748723
  • Polimorfizm genu BCMO1 rs7501331 i genu CD36 rs13230419 to odpowiednio mniejsze lub większe poziomy luteiny w siatkówce oka. 876)ncbi.nlm.nih.gov/pubmed/21091228
  • Polimorfizm ApoE (-/-) zwiększa peroksydację lipidów, zwiększa poziomy VEGF oraz MMP-2 – wszystkie 3 czynniki bardzo nie sprzyjające powstawaniu i progresji AMD, powstawaniu złogów laminarnych, wakuoli i zwiększeniu grubości membrany Brucha(bardzo nie sprzyjający proces!). Luteina jest w stanie częściowo powstrzymać wszystkie te procesy. Z kolei glutation jest w stanie zredukować VEGF, MMP2 i zmiany morfologiczne w siatkówce. 877)ncbi.nlm.nih.gov/pubmed/23738034
  • Polimorfizm genu BCO2( 2250417) zwiększa o 50% ryzyko AMD. Z kolei rs12796114 zmniejsza o 25%. BCMO1 rs11645428 allele AA zwiększają gęstość pigmentu optycznego(w porównaniu do tylko jednej alleli A). Dzięki takiemu zestawieniu alleli genu BCMO1 osoby takie mają zwiększone poziomy lutein i zeaksantyny w organizmie co może zapobiegać AMD. 878)ncbi.nlm.nih.gov/pmc/articles/PMC3908680/
  • Osoby z Alzheimerem mają mniej pigmentu w plamce żółtej, mniejsze koncentracje luteiny i zeaksantyny w tym rejonie oraz słabsze widzenie jak i również zwiększone występowanie(W tej jednostce chorobowej) AMD. 879)ncbi.nlm.nih.gov/pubmed/25024317 880)ncbi.nlm.nih.gov/pubmed/27335042
  • Siatkówka zawiera w sobie luteine i zeaksantyne które chronią fotoreceptory przed światłem filtrując niebieskie światło. 881)sci-hub.tv/10.1016/j.nutres.2013.10.011
  • Przeciętne spożycie luteiny z pożywienia to ok.2 do 3mg czyli zdecydowanie za mało w tej chorobie. 882)ncbi.nlm.nih.gov/pubmed/25813074
  • Luteina,zeaksantyna i omega 3 obniżają czynnik VEGF, COX-2, cytokiny zapalnej TNF alfa i IL-1beta oraz indukowaną syntazę tlenku azotu która także działa prozapalnie w komórkach siatkówki 883)ncbi.nlm.nih.gov/pubmed/23677863
  • Luteina zwiększa gęstość pigmentu plamki żółtej oraz czułość kontrastową. Tłuszcze PUFA(wielonienasycone kwasy tłuszczowe) zmniejszają biodostępność luteiny. 884)ncbi.nlm.nih.gov/pubmed/26720458
  • Luteina może wspierać naprawę białek połączeń ścisłych które kształtują barierę siatkówka/krew. Ponadto zwiększa aktywność dysmutazy nadtlenkowej SOD 1 i 2. Hamuje takżę stan zapalny. 885)ncbi.nlm.nih.gov/pubmed/27444056
  • Połączenie luteiny z epiluteiną zwiększa gęstość optyczną pigmentu plamki żółtej 886)ncbi.nlm.nih.gov/pubmed/28957818
  • Suplementacja luteiną hamuje aktywację systemu białek dopełniacza. 887)ncbi.nlm.nih.gov/pubmed/25160533
  • Owoc liczi ma w sobie sporo luteiny i zeaksantny które to chronią w AMD w badaniach in vivo i in vitro. Badanie wykonane z użyciem nalewki z owoców lichi w którym wykazano także, że nalewka ta hamuje aktywność metaloproteinazy 2 oraz genów białka katepsyny B i cystatyny C które są nadmiernie pobudzone w AMD. 888)ncbi.nlm.nih.gov/pubmed/24163760
  • Olej z jarmużu konkretnie zwiększa poziomy luteiny i zeaksantyny w plamce żółtej. 889)ncbi.nlm.nih.gov/pubmed/24103519
  • Alfa tokoferol zwiększa biodostępność luteiny. 890)ncbi.nlm.nih.gov/pubmed/27080067
  • Postać wolna luteiny jest lepiej wchłaniana przez organizm niż jej estry. 891)ncbi.nlm.nih.gov/pubmed/21677121
  • A2E to bis-retinoid pirymidoniowy (element lipofuscyny). Może on powodować uszkodzenia DNA oraz mitochondriów komórek nabłonka barwnikowego i śmierć tych komórek. Absorbuje on światło widzialne(niebieskie) co powoduje fotolizę komórek nabłonka barwnikowego. 892)Wiktorowska-Owczarek A, Nowak JZ: Patogeneza i profilaktyka AMD: rola stresu oksydacyjnego i antyoksydantów. Postepy Hig Med Dosw (online) 2010; 64: 333-334, e-ISSN 1732-2693. Paulus TVM de Jong: Age-Related Macular Degeneration. N Engl J Med 2006; 355: 1474-1485.893)ncbi.nlm.nih.gov/pubmed/29358124. Luteina i zeaksantyna chronią oczy przed niszczycielskim działaniem A2E oraz światła. 894)ncbi.nlm.nih.gov/pubmed/12033441
  • Połączenie ksantofili tzn.luteiny i zeaksantyny z omega 3 przez 12 miesięcy nie tylko polepszają obrone antyoksydacyjną ale i zwiększają poziomy ksantofili w plamce żółtej, gęstość optyczną oraz pigment plamki. 895)ncbi.nlm.nih.gov/pubmed/23519529
  • Zeaksantyna aktywuje ścieżki PI3K/Akt MAPK/ERK co związane jest także z aktywacją enzymów detoksu drugiej fazy(zwiększa także poziomy glutationu GSH oraz pobudza enzym Nrf2) co przyczynia się do redukcji peroksydacji białek i lipidów w siatkówkce ale i również w wątrobie sercu i we krwii. 896)ncbi.nlm.nih.gov/pubmed/24810054
  • Jagody goji jedzone przez 90dni zwiększają poziomy zeaksantyny i poziomy antyoksydantów oraz chronia przed hipopigmentacją i miękkimi druzami(ich akumulacji) w plamce żóltej oka. Myślę,że suszone jagody goji są totalnie bez szans ze świeżymi polskimi jagodami/borówkami. 897)ncbi.nlm.nih.gov/pubmed/21169874
  • Wysokie poziomy zeaksantyny i likopeny prawdopodobnie zmniejszają ryzyko zachorowania na wysiękowe AMD. 898)ncbi.nlm.nih.gov/pubmed/21508112 Ponadto likopen z pomidorów bardzo dobrze gromadzi się w komórkach pigmentu oka. 899)ncbi.nlm.nih.gov/pubmed/12424324
  • Antyoksydanty(zeaksantyna i cynk) poprawiają widzenie w przypadku nie zaawansowanej formy AMD. 900)ncbi.nlm.nih.gov/pubmed/29053808
  • Witamina C i luteina oraz zeaksantyna wraz z omega 3 zmniejszają poziomy CRP(podniesione u osób z AMD), natomiast witamina E,palenie oraz otyłość zwiększa ten marker stanu zapalnego. Witamina B6 oraz antyoksydany obniżają poziomy homocysteiny(w AMD podniesiona) natomiast nadciśnienie związane jest z wysoką homocysteiną. 901)ncbi.nlm.nih.gov/pubmed/16530626
  • Jagody goji zwiększają poziom zeaksantyny w organizmie jak i antyoksydantów, chronią przed hipopigmentacją oka i akumulacją druzów miękkich(złogi) w oku. 902)ncbi.nlm.nih.gov/pubmed/21169874
  • Spirulina jest bardzo dobrym źródłem zeaksantyny i bardzo szybko zwiększa jej poziom w organizmie. 903)ncbi.nlm.nih.gov/pubmed/22313576
  • Długotrwała suplementacja zeaksantyną, luteiną i omega 3 powoduje wzrost gęstości pigmentu plamki żołtej u osób z AMD. 904)ncbi.nlm.nih.gov/pubmed/23695657
  • Zeaksantyna i luteina poprawiają kontrast widzenia u osób z AMD. 905)ncbi.nlm.nih.gov/pubmed/25408222
  • W populacji chińskiej osób z AMD stężenia zeaksantyny i luteiny jak i cholesterolu HDL są zdecydowanie niższe niż u osób zdrowych. 906)ncbi.nlm.nih.gov/pubmed/24743813
  • Zeaksantyna i luteina poprawiają kontrast widzenia u osób z AMD. 907)ncbi.nlm.nih.gov/pubmed/25408222

 

Zwyrodnienie plamki żółtej (AMD) a resweratrol

  • Longevinex to doustny resweratrol wraz z d3 i heksafosforanem inozytolu(IP6) który poprawia strukturę i funkcje oka u osób z AMD. 908)ncbi.nlm.nih.gov/pubmed/25329968
  • Resweratrol(naturalna substancja występująca w skórce winogron czy też w wysokim stężeniu w rdestowcu japońskim) wraz z d3 i inozytolem sześciofosforanowym (IP6) pozytywnie wpływa na poprawę struktury i funkcji siatkówi osób z AMD. 909)ncbi.nlm.nih.gov/pmc/articles/PMC4210925/
  • Resweratrol hamuje MAPK. Ścieżka ta jest pobudzana przez np. kadm z dymu papierosowego co przyczynia się do nadmiernego stresu oksydacyjnego. Zbyt długie pobudzenie ścieżki MAPK/ERK1/2 prowadzi do śmierci komórkowej. MAPK moduluje ścieżkę sygnalizacyjna VEGF(ciągle pobudzona ścieżka MAPK pobudza VEGF). Cytokina IL-17A pobudza MAPK i ERK1/2 w komórkach nabłonka pigmentu siatkówki.Syntetyczne inhibitory MAPK w ok.1% przypadków powodują poważne problemy zdrowotne i działają toksycznie na wzrok. Można się tylko domyślać, że ziołowe odpowiedniki nie będa miały tak trującego działania i mogą pomóc w AMD. 910)ncbi.nlm.nih.gov/pmc/articles/PMC4920203/
  • Resweratrol jest stymulatorem SIRT zwiększa poziomy eNOS w nabłonku(po 2 minutach INCUBATION), zwiększa aktywację AMPK, hamuje zniszczenia powstałe z nadmiernie pobudzonych cytokin IL-6 i TNF alfa, obniża ekspresję molekuł ICAM-1 i VCAM-1, hamuje aktywację i agregację płytek krwi, hamuje apoptozę komórkową, stan zapalny i działa antyoksydacyjnie(reguluje HO-1 oraz PGC-1a), hamuje zwiększanie się wewnątrzkomórkowego wapnia Ca2+. Hamuje hipoksję i TGF-beta bez wpływu na antyangiogenne endostatyny. Obniża ekspresję NFkB i HIF-1a oraz hamuje VEGF. 911)ncbi.nlm.nih.gov/pmc/articles/PMC4848669/
  • Resweratrol hamuje wewnątrzkomórkowe A2E(zapobiega jego akumulacji) i chroni oczy przed niebieskim światłem. 912)ncbi.nlm.nih.gov/pubmed/27659166
  • Resweratrol hamuje VEGF, niedotlenienie i cytokinę TGF beta. 913)ncbi.nlm.nih.gov/pubmed/24729934
  • Połączenie omega 3 z resweratrolem wzmaga autofagię przyczyniając się do cytoprotekcji(ochrony komórkowej). 914)ncbi.nlm.nih.gov/pubmed/27187449
  • Resweratrol wykazuje działanie przeciwzapalne, przeciwoksydacyjne oraz hamujące angiogenezę(antyVEGF) dzięki czemu jest przydatny w każdym typie charakteryzowanej choroby. 915)ncbi.nlm.nih.gov/pubmed/26950104
  • Resweratrol chroni siatkówkę przed niedokrwieniem poprzez obniżenie MMP-9, iNOS i podwyższenie HO-1. 916)ncbi.nlm.nih.gov/pubmed/23075401
  • Resweratrol może chronić komórki plamki żółtej przed stresem oksydacyjnym 917)ncbi.nlm.nih.gov/pubmed/21663493
  • Resweratrol hamuje HIF-1alfa oraz VEGFR2 oraz aktywację VEGF który jest pobudzany przez SIRT1(zarówno HIF-1alfa jak i VEGF są pobudzane przez ten czynnik). Sugeruje się, aby zainteresować się hamowaniem SIRT1 niż VEGF/HIF-1alfa. 918)ncbi.nlm.nih.gov/pubmed/26174951
  • Resweratrol chroni przed rozwinięciem się mokrej postaci AMD. 919)ncbi.nlm.nih.gov/pubmed/25091551
  • Resweratrol hamuje uszkodzenia niedokrwienno-reperfuzyjne chroniąć komórki zwojowe siatkówki przed śmiercią. Hamuje kaspazę 8 i 3 które doprowadzają to apoptozy. 920)ncbi.nlm.nih.gov/pubmed/28985092
  • Resweratrol hamuje angiogenezę co jest bardzo przydatną właściwością tego związku w mokrej postaci AMD. 921)ncbi.nlm.nih.gov/pubmed/26155161922)ncbi.nlm.nih.gov/pubmed/21282584
  • Umiarkowane picie wina zmniejsza ryzyko AMD. (chodzi naturalnie o resweratrol w nim zawarty) 923)ncbi.nlm.nih.gov/pubmed/9434658
  • Resweratrol hamuje indukowany czynnik hipoksji(niedotlenienia) HIF-1alfa, VEGF i VEGFR2 poprzez oddziaływanie na SIRT1 co przyczynia się do zahamowania neuowaslukaryzacji plamki żółtej. 924)ncbi.nlm.nih.gov/pubmed/26174951
  • Resweratrol wspiera bioenergetykę mitochondriów komórek barwnikowych siatkówki 925)ncbi.nlm.nih.gov/pubmed/24008411
  • Resweratrol redukuje substancję zapalną COX-2(cyklooksygenaza-2) w komórkach nabłonka pigmentu oka. Sugeruje się, że może być dobrym środkiem do zapobiegania wczesnej postaci AMD. 926)ncbi.nlm.nih.gov/pubmed/24036938 927)ncbi.nlm.nih.gov/pubmed/25775159
  • Resweratrol to substancja zawarta między innymi w skórkach winogron(ich jak i wina nie polecam ze względu na duża ilość toksyn) pełni wiele pożytecznych funkcji w prewencji i leczeniu AMD. Usuwa amyloid beta – jeden z głownych problemów w tej chorobie, działa przeciwzapalnie, antyoksydacyjne, reguluje homeostazę energi w neuronach( AMP kinaze). 928)ncbi.nlm.nih.gov/pubmed/25281824
  • Resweratrol w momencie stresu oksydacyjnego aktywuje PPAR alfa i moduluje PPAR gamma co przyczynia się do obrony komórek nabłonka pigmentowego siatkówki 929)ncbi.nlm.nih.gov/pubmed/24309288
  • Resweratrol obniża MCP-1. 930)ncbi.nlm.nih.gov/pubmed/26190093

 

Zwyrodnienie plamki żółtej (AMD) a biochemiczne interwencje lecznicze

  • Pomimo, że cytokiny zapalne IL-1beta i IL17 pobudzają autofagię , mogą spowodować śmierć komórkową w AMD przez nią wywołaną 931)ncbi.nlm.nih.gov/pubmed/25580276/. Zahamowanie tych 2 cytokin powinno być uwzględnione w naturalnym protokole leczniczym.
  • Neowaskularyzacja naczyniówki aktywuje MCP-1 – cytokinę, która powoduje rekrutację makrofagów. Wykazano, że makrofagi fenotypu M1 mogą zahamować neowaskularyzację naczyniówki. Sugeruje się także, że receptory VEGF(pobudzone) mogą powodować rekrutację makrofagów. kinaza ROCK-2 i jej zahamowanie powodują obniżenie się neowaskularyzacji naczyniówki poprzez regulację polaryzacji makrofagów. Do polaryzacji makrofagów w podtyp M1 przyczynia się GM-CSF, LPS lub interferon gamma, z kolei do M2 M-CSF, IL4, IL10, IL-13. 932)ncbi.nlm.nih.gov/pmc/articles/PMC5733520/) Cytokiny takie jak IL-12 czy interferon gamma hamują angiogenezę w rogówce, siatkówce i naczyniówce. Tak samo zahamowanie IL-23 i IL-17a prowadzi do tego. 933)ncbi.nlm.nih.gov/pmc/articles/PMC5733520/

Polaryzacja makrofagów – czyli ich przekształcanie się w typ M1 lub typ M2 934)ncbi.nlm.nih.gov/pmc/articles/PMC5733520/

  • Amyloid beta zwiększa migrację nabłonkowych komórek progenitorowych poprzez nadmierną aktywację CXCR1 co może przyczyniać się do rozwoju neowaskularyzacji naczyniówki. 935)ncbi.nlm.nih.gov/pubmed/21527754. Wykazano już zresztą, że terapia przeciwamyloidowa chroni nabłonek pigmentu przed zniszczeniem i utratą wzroku w AMD. 936)ncbi.nlm.nih.gov/pubmed/21690377
  • Receptor mGluR5 reguluje neurogenezę w komórkach nabłonka pigmentu siatkówki poprzez ścieżki MAPK/PI3K i sugeruje się, że może mieć to zastosowanie w AMD (narazie jak tylko czysto teoretyczne). 937)ncbi.nlm.nih.gov/pubmed/26902516
  • Sugeruje się że Sfingozyno-1-fosforan (S1P) to mediator lipidowy który reguluje stan zapalny i czynniki proangiogenne. Może on powodować nadmierną aktywność neowaskularyzacyjną naczyniówki oraz zwiększa poziomy czynnika niedotlenienia HIF-1alfa, które to są mocno zaaganżowane w patogenezę AMD. Alipoproteina M (ApoM) hamuje formowanie się neowaskularyzacji wywołanej przez S1P. 938)ncbi.nlm.nih.gov/pubmed/29301231
  • Ścieżka sygnałowa JNK1 (i jej zahamowanie) jest w stanie zahamować stres oksydacyjny, apoptozę rekrutacji makrofagów, produkcję VEGF i stan zapalny w mokrym typie AMD. 939)ncbi.nlm.nih.gov/pubmed/23341606
  • Komórki Schwanna posiadają zdolności oksydacyjne nie tylko promujące odbudowę układu nerwowego ale i uszkodzeń siatkówki. 940)ncbi.nlm.nih.gov/pubmed/28293647
  • Receptory P2X7 wpływają na wytwarzanie cytokiny IL-1beta przez mikroglej. 941)ncbi.nlm.nih.gov/pubmed/23040806/ . Zatem jeśli są pobudzone należy je zahamować.942)ncbi.nlm.nih.gov/pubmed/23040806/
  • Egzogenna laktoferyna zmniejsza neowaskularyzację naczyniowkową(przynajmniej u myszy). 943)ncbi.nlm.nih.gov/pubmed/25835346
  • SIRT1 hamuje NF-kB pobudzone przez amyloid beta hamując tym samym stan zapalny w AMD. 944)ncbi.nlm.nih.gov/pubmed/24036938
  • Sugeruje się, że Bcl-x(L) pełni ważną funkcję w przetrwaniu komórek nabłonka pigmentu siatkówki i leczenie które miałoby zwiększać aktywność tego białka jak i również zahamować konwersje Bcl-x(L) do Bcl-x(S) może zapobiegać śmierci komórek nabłonka pigmentu siatkówki w AMD. 945)ncbi.nlm.nih.gov/pubmed/17652760
  • Agoniści receptorów PPAR alfa(czyli środki aktywujące te receptory) hamują zniszczenia powstałe w nabłonku pigmentu siatkówki poprzez zahamowanie Nf-kB i cytokin prozapalnych. 946)ncbi.nlm.nih.gov/pubmed/25936740
  • Agoniści RAR-gamma są efektywni w leczeniu podsiatkówkowych zwłóknień związanych z AMD 947)ncbi.nlm.nih.gov/pubmed/25947075
  • Inhibitory cyklooksygenazy mogą być pomocne w zahamowaniu przepuszczalności naczyń krwionośnych w mokrym typie AMD. (tutaj przypadek kobiety, która brała loxoprofen sodu przez 7dni i zanotowała poprawę wysiękowego uszkodzenia naczyniówki związanego z AMD).  Jednym z naturalnych inhibitorów COX jest np.złocień maruna.948)ncbi.nlm.nih.gov/pubmed/21928264
  • Agoniści reeptorów LXR lub inhibitory miR-33 przywracają efflux(czyli wypływ/pozbycie się) cholesterolu w AMD przez makrofagi. 949)ncbi.nlm.nih.gov/pubmed/23562078
  • Agoniści(czyli coś co pobudza) receptora serotoninowego 5HT1a chronią strukturę komórek nabłonka pigmentu siatkówki oraz membranę Brucha jak i również fotoreceptory przed degeneracją zapobiegająć geograficznej atrofi(zaawansowana forma suchego AMD). 950)ncbi.nlm.nih.gov/pubmed/26315784
  • Ścieżka sygnałowa JNK(Janus kinase) obniża VEGF i patologiczną neowaskularyzację naczyniówki. Oznacza to,że odgrywa ona jakąś rolę w tej chorobie. 951)ncbi.nlm.nih.gov/pubmed/19433784
  • Agoniści PPAR gamma regulują adipogenezę i stan zapalny oraz pełnią funkcje antyangiogenne. Mogą być użyteczne w leczeniu retinopatii cykrzycowej, AMD i innych zaburzeń ocznych. 952)ncbi.nlm.nih.gov/pubmed/18810647 Ponadto aktywacja tych receptorów kontroluje stan zapalny, odpowiedz mikrogleju i ilość makrofagów – wszystko to ogranicza stan zapalny. Ponadto receptory te mogą hamować neowaskularyzację i polepszać mikrocyrkulację w siatkówce. Badaia in vitro i in vivo wykazującą ich antyangiogenne właściwości 953)ncbi.nlm.nih.gov/pmc/articles/PMC2276614/#B76954)ncbi.nlm.nih.gov/pubmed/12370270/955)ncbi.nlm.nih.gov/pubmed/12785728/ 956)ncbi.nlm.nih.gov/pmc/articles/PMC2276614957)ncbi.nlm.nih.gov/pubmed/14684628/
  • Podniesiony czynnik GDNF w siatkówce chroni przed zniszczeniami przez lipidy,białka i zniszczeniami DNA (bardziej w tym przypadku redkuje zniszczenia wywołane przez stres oksydacyjny). 958)ncbi.nlm.nih.gov/pubmed/17935603
  • Ścieżka sygnałowa EPAC-Rap1 hamuje VEGF tak samo jak pobudzenie Ścieżki Ras/MEK/ERK. Ponadto EPAC-Rap1 pomaga w przywróceniu bariery krew-siatkówka. 959)ncbi.nlm.nih.gov/pubmed/29158262
  • Aktywacja mikrogleju przez lipopolisacharyd(LPS – to cząsteczka obecna na bakteriach gram ujemnych) zwiększa poziomy ferrytyny i żelaza w mózgu. 960)ncbi.nlm.nih.gov/pubmed/20021380/961)ncbi.nlm.nih.gov/pubmed/17551926/ 962)ncbi.nlm.nih.gov/pubmed/18442088/
  • SIRT3(pobudzanie tego czynnika) może hamować neowaskularyzację siatkówki poprzez regulację metaloproteinaz 2,9,czynników VEGF i HIF-1alfa oraz IGF-1. 963)ncbi.nlm.nih.gov/pubmed/27856259
  • Hepcydyna syntetyzowana jest w wątrobie i hamuje efflux(wypływ) żelaza z komórek co prowadzi do zwiększenia się zapasów żelaza. Podczas stanu zapalnego(na to ma wpływ cytokina IL-6) hepcydyna jest podwyższona co skutkuje składowaniem żelaza w tkankach. 964)ncbi.nlm.nih.gov/pubmed/17124036/
  • W komórkach nabłonka pigmentu siatkówki znajdują się receptory kanabinoidowe CB1. Stres oksydacyjny nadmiernie pobudza te receptory. Wykazano, że wyłączenie lub zahamowanie tych receptorów chroni w/w komórki przed wolnymi rodnikami i może być dobrą opcją leczniczą w AMD. 965)ncbi.nlm.nih.gov/pubmed/23441106 Obniża je np.zioło andrographis 966)ncbi.nlm.nih.gov/pubmed/20446039 czy też cholina zawarta w jajku(żółtku)967) ncbi.nlm.nih.gov/pubmed/20938992
  • Pobudzenie enzymu ACE2 niweluje stan zapalny wywołany przez amyloid beta poprzez aktywację osi ACE2/Ang(1-7)/Mas w komórkach nabłonka pigmentu siatkówki 968)ncbi.nlm.nih.gov/pubmed/28605813
  • Inhibitory COX-2 mogą leczyć a przynajmniej zapobiegać zwłoknieniom podsiatkówkowym(hamują VEGF i TGF-B2 w komórkach nabłonka pigmentu siatkówki a nadmiernie pobudozna cutokina TGF beta przyczynia się do powstawania zwłóknień). 969)ncbi.nlm.nih.gov/pubmed/26760305
  • Ścieżka sygnałowa TGF beta/Smad(zahamowana) obniża czynnik VEGF oraz cytokinę zapalną TNF alfa – sugeruje się, że inhibitory TGF beta mogą być pomocne w leczeniu mokrej postaci AMD. 970)ncbi.nlm.nih.gov/pubmed/28852052
  • Pobudzenie TLR2 i TLR3 może być związane z patogenezą mokrego AMD. 971)ncbi.nlm.nih.gov/pubmed/23946637
  • Zarówno beta jak i gamma sekretaza(ich zahamowanie) hamuje amyloid beta 40 i 42 w mózgu, z kolei receptory PPAR gamma są mocnym inhibitorem beta sekretazy. 972)Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5:481–489
  • Niedobory ceruloplazminy czy hephaestyny(jest to białko zaangażowane w metabolizm i regulacje żelaza i możliwe że i miedzi) powoduja zaburzenia w transporcie żelaza i miedzi i prowadzą do zmian degeneracyjnych siatkówki. 973)en.wikipedia.org/wiki/Hephaestin
  • Utrzymanie wysokiego poziomu czynnika BDNF(jest to mózgowy czynnik wzrostu nerwów) może mieć znaczenie w przypadku akumulacji amyloidu beta (nadmiernie się on kumuluje przy braku tego czynnika czy też w przypadku polimorfizmu jego genu). Ponadto sama akumulacja amyloidu powoduje obniżenie się BDNF. 974)sci-hub.hk/10.1007/s00018-016-2295-x
  • Blokery beta sekretazy jak i również przeciwciała przeciwko amyloidowi beta chronią wewnętrzną część siatkówki 975)Guo L et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449
  • Zaburzenia ścieżki Wnt mogą prowadzić do stanów zapalnych siatkówki i zwiększonych poziomów A2E. Dezaktywacja tej ścieżki wydaje się ważną opcją leczniczą. 976)ncbi.nlm.nih.gov/pubmed/26476672
  • Wykryto, że lipofuscyna może być usuwana – robią to makrofagi. 977)ncbi.nlm.nih.gov/pubmed/22244091
  • Agoniści receptorów LXR zwiększają eliminacje cholesterolu i mogą być ciekawą interwencją w przypadku złogów cholesterolu w AMD. 978)ncbi.nlm.nih.gov/pmc/articles/PMC4058366/
  • Pobudzenie receptorów RXR chroni komórki nabłonka pigmentu siatkówki przed apoptozą związana ze stresem oksydacyjnym. Sugeruje się, że agoniści tych receptorów mogą być interwencją leczniczą w chorobach degeneracyjnych siatkówki. 979)ncbi.nlm.nih.gov/pubmed/26883505
  • Fagocytoza i H2O2 zwiększają katalazę i metallotioniny w komórkach nabłonka pigmentu siatkówki więc jest to można powiedzieć naturalna obrona na stres oksydacyjny w organizmie. 980)ncbi.nlm.nih.gov/pubmed/7775104
  • Autofagia degraduje lipofuscynę. 981)ncbi.nlm.nih.gov/pubmed/28353645
  • Tioredoksyna 1 i 2 (thioredoxin 1 i 2) są aktywne w mitochondriach i cytoplazmie komórek nabłonka pigmentu siatkówki gdzie pełnią rolę antyoksydacyjną, TRX1 chroni komórki przed śmiercią czy też depolaryzacją membrany mitochondrialnej. Pobudzenie tych białek może być pomocne w zwalczaniu stresu oksydacyjnej w tej chorobie. Ponadto TRX2 hamuje ekspresję białka szoku cieplnego – Hsp70. Działa antyoksydacyjnie bezpośrednio na mitochondria komórkowe. 982)ncbi.nlm.nih.gov/pubmed/23485938983)ncbi.nlm.nih.gov/pubmed/24319591
  • Fotoreceptory w siatkówce oka niszczy akumulacja żelaza. Udowodniono, że transferyna działa w tym przypadku ochronnie jednak najprawdopodobniej u ludzi z AMD są problemy z jej prawidłowym funkcjonowaniem. 984)ncbi.nlm.nih.gov/pubmed/21179240
  • Nadmiernie podniesiony interferon gamma zwiększa aktywację VEGF a to doprowadzi do nadmiernej angiogenezy. (interferon gamma jest pobudzany między innymi przez ścieżkę sygnałową mTOR). 985)ncbi.nlm.nih.gov/pubmed/20157617
  • TGF beta1 może zapobiegać uszkodzeniu siatkówki przez amyloid beta 986)ncbi.nlm.nih.gov/pubmed/26845696
  • PGC-1alfa reduluje śmierć komórek nabłonka pigmentu siatkówki wywołaną przez h2o2, moduluje aktywność genów antyoksydacyjnych (CAT,GPX1,PRDX1, SOD1, SOD2, TXN2). Podniesienie statusu tego koaktywatora transkrypcyjnego może być korzystne w AMD. 987)ncbi.nlm.nih.gov/pmc/articles/PMC4788093/
  • Agoniści(coś co pobudza) receptorów LXR hamują cytokiny zapalne TNF alfa i IL-6 jak i równieżNLRP3 inflammasomy, kaspazę 1 i IL-1beta. 988)ncbi.nlm.nih.gov/pubmed/28760679
  • Sugeruje się, że pobudzenie receptora kanabinoidowego 2 może ochronić siatkówkę przed uszkodzeniem przez światło. 989)ncbi.nlm.nih.gov/pubmed/29133122
  • SIRT1 hamuje NFkappaB oraz cytokiny IL-6,8 i metaloproteinazę 9. Balansuje integralność bariery nabłonka pigmentu siatkówki który została zaburzona przez amyloid beta. 990)ncbi.nlm.nih.gov/pubmed/24036938/991)ncbi.nlm.nih.gov/pmc/articles/PMC5288547/
  • Pobudzenie Wnt5a możę zahamować ścieżkę Wnt w komórkach nabłonka pigmentu siatkówku poprzez promocję fosforylacji Beta kateniny i jej degradację. Sugeruje się terapeutyczny potencjał Wnt5a w AMD. 992)ncbi.nlm.nih.gov/pubmed/26246285
  • Zahamowanie ścieżki PI3K/mTOR może skutecznie zahamować czynniki wzrostu w tym i VEGF. 993)ncbi.nlm.nih.gov/pubmed/27304845
  • Komórki CD93 są nadmiernie aktywowane u osób z AMD – sugeruje się, że ich zahamowanie może być interwencją leczniczą w mokrym typie AMD. 994)ncbi.nlm.nih.gov/pubmed/27859225
  • Zahamowanie cytokiny zapalnej IL-1beta oraz receptora P2RX7 może pomóc zahamować utratę fotoreceptorów w późnym stadium AMD(w tym i geograficznej atrofii). Inne badanie potwierdza wnioski tego pierwszego na temat potencjału receptorów P2X(7) i ich wpływie na śmierć komórek pigmentu siatkówki (należy zahamować owe receptory) 995)ncbi.nlm.nih.gov/pubmed/25948251 996)ncbi.nlm.nih.gov/pubmed/21071745
  • Nadmierne pobudzenie chemokiny CCL-2 przez komórki Mullera sprzyja infiltracji monocytów/mikrogleju powodująć w ten sposób stan zapalny i śmierć komórek fotoreceptorowych co doprowadza do uszkodzeń siatkówki. Modulacja tej chemokiny może zmniejszyć stan zapalny i powstrzymać śmierć komórek w chorobie zwyrodnieniowej siatkówki. 997)ncbi.nlm.nih.gov/pubmed/22992301
  • Cytokina zapalna IL-6 może przyczyniać się do podsiadkówkowego zwłóknienia. Zahamowanie receptora IL-6(IL-6R) może być efektywną terapią w przypadku mokrego typu AMD w jego zaawansowanym stadium. 998)ncbi.nlm.nih.gov/pubmed/24790857
  • Ścieżka sygnałowa Notch jest głównym regulatorem neowaskularyzacji plamki żółtej i wpływ na nią może być jedną z interwencji leczniczych w tej chorobie 999)ncbi.nlm.nih.gov/pubmed/21228388
  • Zahamowanie cytokiny zapalnej IL-1beta hamuje czynnik VEGF dzięki czemu można kontrolować neowaskularyzację plamki żółtej. 1000)ncbi.nlm.nih.gov/pubmed/21514452
  • Białko szoku cieplnego HSP70 zapobiega zwłoknieniu podsiatkówkowemu(HSP70 dodatkowo pobudza cytokinę przeciwzapalną IL-10). 1001)ncbi.nlm.nih.gov/pubmed/24376495
  • Zahamowanie mikroRNA-23a prowadzi do zahamowania stresu oksydacyjnego w komórkach nabłonka pigmentu siatkówki. 1002)ncbi.nlm.nih.gov/pubmed/27411920
  • STAT3 oraz SIRT1 chronią przed stresem oksydacyjnym obecnym w siatkówce(w komórkach nabłonka pigmentu). 1003)ncbi.nlm.nih.gov/pubmed/25847123
  • Ścieżka sygnałowa Wnt nadmiernie aktywuje czynnik VEGF, zapalny czynnik transkrypcyjny NF-kB i cytokinę zapalną TNF alfa w siatkówce oka powodując nadmierny stan zapalny – jej zahamowanie powinno polepszyć status zdrowotny osób z tą chorobą 1004)ncbi.nlm.nih.gov/pubmed/19875668
  • Jednym z metod hamowania i pobudzania VEGF może być zahamowanie(lub pobudzenie) białka SR (SRPK1). 1005)ncbi.nlm.nih.gov/pubmed/22817743
  • PGC-1alfa to mediator funkcji mitochondrialnych w komórkach. Wykazano, że aktywuje on geny antyoksydacyjne i chroni komórki nabłonka pigmentu siatkówki przed śmiercią nie zmieniając ich funkcji. 1006)ncbi.nlm.nih.gov/pubmed/26962700
  • Ścieżka sygnałowa Noch pełni ważną rolę w utrzymaniu komórek progenitorowych siatkówki(komórki budujące). 1007)sci-hub.tv/10.1016/S1673-8527(09)60077-1
  • HSP90(białko szoku termicznego) to proteina zapobiegająca zwijaniu się białek. Reguluje ona czynnik hipoksji HIF który nie funkcjonuje prawidłowo w AMD. 1008)sci-hub.tv/10.1016/j.arr.2009.06.002
  • Cytokina IL-18 hamuje czynnik VEGF co sugeruje, że może mieć zastosowanie w mokrej postaci AMD. 1009)ncbi.nlm.nih.gov/pubmed/24515951
  • Utrata komórek Mullera prowadzi do rozerwania bariery krew-siatkówka i zwiększonych poziomów żelaza w siatkówce. 1010)ncbi.nlm.nih.gov/pubmed/28846772

Przebieg postępowania choroby AMD zarówno suchej formy jak i mokrej 1011)ncbi.nlm.nih.gov/pmc/articles/PMC4983667/

  • Neowaskularyzacja naczyniówki może być zahamowana poprzez zahamowanie ścieżki sygnałowej mTOR. 1012)ncbi.nlm.nih.gov/pubmed/289180271013)ncbi.nlm.nih.gov/pubmed/25144531
  • Zahamowanie HSP90 powoduje zahamowanie angiogenezy (zatem posiada właściwości lecznicze w mokrej odmianie AMD).
  • Co ciekawe w retinopatii cukrzycowej dochodzi do aktywacji metaloproteinazy MMP-2 która niszczy mitochondria komórkowe poprzez białko szoku cieplnego Hsp60 oraz koneksyne 43(connexin 43) które to aktywują śmierć komórkową. Aktywacja dysmutazy  nadtlenkowej MnSOD redukuje zniszczenia tworzone przez MMP-2 – wspominam o tym bo jest to dokładnie ten sam cykl zdarzeń jaki występuje w AMD. 1014)ncbi.nlm.nih.gov/pmc/articles/PMC3652603/
  • MikroRNA-23a(miR-23a) chroni komórki nabłonka pigmentu siatkówki przed uszkodzeniami oksydacyjnymi 1015)ncbi.nlm.nih.gov/pubmed/21693609
  • Utlenione fosfolipidy czy też h2o2 powodują wydzielanie się MCP-1 w komórkach nabłonka pigmentu siatkówki a to powoduje stres oksydacyjny, przez który następuje migracja makrofagów i wydzielanie się cytokin zapalnych TNF alfa, IL-1beta i czynnika VEGF. Sugeruje się, że wszystko mogłoby być zniwelowane poprzez zastosowanie czegoś anty MCP-1. (np.przeciwciał). 1016)ncbi.nlm.nih.gov/pubmed/27812755
  • Kinaza Rho (ROCK) jest związana ze zwiększaniem angiogenezy przez czynnik VEGF oraz ze zwłóknieniem jak i stanem zapalnym. Jej zablokowanie hamuje stan zapalny i zwłóknienia co jest bardzo przydatne w przypadku mokrego typu AMD. 1017)ncbi.nlm.nih.gov/pubmed/25626969
  • Wykazano, że cytokina IL-18 działa przeciwangiogennie (hamuje nadmierny rozrost naczyń krwionośnych w mokrej postaci AMD). 1018)ncbi.nlm.nih.gov/pmc/articles/PMC4248465/
  • Pobudzenie genu p53 wpływa na molekułę nitlin-3 która hamuje angiogenezę w siatkówce. 1019)ncbi.nlm.nih.gov/pubmed/24018558
  • Zahamowanie PPARß/? hamuje angiogenezę w neowaskularyzacji naczyniówki(in vitro i in vivo) z kolei aktywacja tych receptorów zmniejsza akumulację lipidów w nabłonku pigmentu siatkówki. 1020)ncbi.nlm.nih.gov/pubmed/276223881021)ncbi.nlm.nih.gov/pmc/articles/PMC2276600/
  • DJ-1 to kolejny czynnik który reguluje stres oksydacyjny w komórkach nabłonka pigmentu siatkówki. Jego aktywacja zmniejsza ilości wolnych rodników powstałych na skutek stresu oksydacyjnego. 1022)ncbi.nlm.nih.gov/pubmed/23844142
  • p62 promuje autofagię i pobudzenie enzymu Nrf2 w komórkach nabłonka pigmentu siatkówki w celu ochrony przed stresem oksydacyjnym.
  • Pobudzona ścieżka MAPK zwiększa angiotensynę II – hormon który powoduje wzrost ciśnienia(zwiększając tym samym ryzyko AMD) ale i również związana jest ze stresem retikulum endoplazmatycznym oraz stanem zapalnym. Hamowanie MAPK(i cytokiny TNF alfa która pobudza tą ścieżkę) może być jedną z opcji leczniczych w AMD. 1023)ncbi.nlm.nih.gov/pubmed/21641389/
  • Zahamowanie funkcji TLR2 prawdopdoobnie obniża stan zapalny i chroni komórki nabłonka pigmentu siatkówki. Takie działanie może zahamować neowaskularyzację naczyniówki. 1024)ncbi.nlm.nih.gov/pubmed/28739342
  • Endostatyna to endogenna substancja która może zahamować angiogenezę (przynajmniej podawanie jej z zewnątrz w wysokich dawkach właśnie to powoduje). 1025)ncbi.nlm.nih.gov/pubmed/17526870
  • Wysokie poziomy GDNF(Neurotroficzny czynnik pochodzenia mózgowego (BDNF, z ang. brain-derived neurotrophic factor) – białko wydzielane przez neurony, należące do rodziny czynników wzrostu nerwów. W mózgu BDNF warunkuje funkcjonowanie neuronów siatkówki, cholinergicznych i dopaminergicznych) (ale nie BDNF) chronią komórki zwojowe siatkówki jak i fotoreceptory przed apoptozą. Gigantyczny raport na temat większości kluczowych czuników troficznych typu NGF,GDNF, BDNF, FGF1,IGF-1,PEDF itp. i ich ochrony przez nich narządu wzroku można znaleźć tutaj sci-hub.tw/10.1016/j.survophthal.2013.09.004 .Podusmowując można tylko stwierdzić, że wszystkie mają mniejszy lub większy wpływ na ochronę wzroku poprzez działanie na różne elementy oka znajdujące się wokół siatkówki.
  • Humanina to peptyd o działaniu neuroprotekcyjnym, przeciwzapalnym, antyapoptycznym, antyfibrylogennym. Chroni on komórki nabłonka pigmentu siatkówki przed śmiercią wywołaną stresem oksydacyjnym. Aktywuje ona enzymy antyoksydacyjne w mitochondriach w tym zwiększa poziomy glutationu GSH. Chroni przed stresem retikulum endoplazmatycznego. 1026)ncbi.nlm.nih.gov/pmc/articles/PMC5319229/1027)ncbi.nlm.nih.gov/pubmed/26990160
  • W AMD dochodzi do zaburzeń mitochondriów. Jedną z możliwości ich ochrony jest wpływ na substancje o nazwie Humanina i jej gen (MT-RNR2). Ma ona funkcje neuroprotekcyjną i jest obniżona w chorobach ocznych w tym i w Alzheimerze, arteriosklerozie, cukrzycy typu 1. Humanina chroni przed negatywnym działaniem hipoksji(niedotlenienia) tj.przed jej toksycznością względem komórek zwojowych siatkówki. Inną metodą stabilizacji mitochondriów jest używanie takich substancji jak kreatyna, koenzym 10 i jego analogi. 1028)ncbi.nlm.nih.gov/pmc/articles/PMC5644411/
  • Humanina chroni przed apoptozą związaną z amyloidem beta. Obniża aktywowane kaspazy 3 i 4 co przyczynia się do zahamowania apoptozy komórek nabłonka pigmentu siatkówki. Ponadto przywraca poziomy glutationu GSH w mitochondriach oraz hamuje powstawanie wolnych rodników. Poziom tego peptydu spada wraz z wiekiem 1029)ncbi.nlm.nih.gov/pmc/articles/PMC5549471/ 1030)ncbi.nlm.nih.gov/pubmed/28726777
  • Białko Thy-1 reguluje czynnik VEGF w komórkach nabłonka naczyniówki. 1031)ncbi.nlm.nih.gov/pubmed/27768790
  • Zahamowanie Hsp90(białko szoku termicznego) powoduje zastopowanie stanu zapalnego w komórkach nabłonka pigmentu siatkówki ale i również neowaskularyzacji. 1032)ncbi.nlm.nih.gov/pubmed/17870069/1033)ncbi.nlm.nih.gov/pubmed/19266313/
  • Semaphorin 3F (Sema3F) to białko, które zmniejsza neowaskularyzacje w mokrej wersji AMD. 1034)ncbi.nlm.nih.gov/pubmed/28373097
  • Pobudzenie receptorów TLR3 powoduje degenerację komórek zwojowych siatkówki. 1035)ncbi.nlm.nih.gov/pubmed/25564448 Zatem należy je hamować.
  • Zaburzenia funkcjonowania dysmutazy nadtlenkowej cynkowo miedziowej SOD1 powoduje chroniczny stres i może doprowadzić do AMD powodując spłycenie się siatkówki i warstwy komórek nabłonka pigmentu siatkówki, zgrubienie membrany Brucha, gromadzenie się złogów, rozłam bariery krew-siatkówka oraz akumulacje makrofagów i mikrogleju. Receptory P2X7R (ich brak lub zahamowanie) zapobiega stresowi oksydacyjnemu. 1036)ncbi.nlm.nih.gov/pubmed/27810364
  • Receptor węglowodorów aromatycznych (AhR) to receptor, który reguluje metabolizm ksenobiotyków i detoksykację. Myszy bez tego receptora(’skasowano’ genetycznie jego gen) zapadają na suchą formę AMD w tym mają zaburzone połączenia ścisłe w komórkach nabłonka pigmentu siatkówki oraz dochodzi u nich do atrofi naczyniówki. Dochodzi także do wysokiego poziomu cholesterolu LDL i jego form utlenionych a ta lipoproteina może stymulować zwiększone wydzielanie się zewnątrzkomórkowych molekuł macierzy często znajdowanych w złogach komórek nabłonka pigmentu siatkówki. Sugeruje się, że AhR (jego pobudzanie) może być potencjalną opcją lecznicza w tej chorobie. 1037)ncbi.nlm.nih.gov/pubmed/24106308
  • Receptory P2X(7) mogą przyczyniać się do śmierci komórek pigmentu siatkówki poprzez zaburzenie homeostazy wapnia.,zatem ich zahamowanie jest ważne.1038)ncbi.nlm.nih.gov/pubmed/21071745
  • Cytokina zapalna IL8 przyczynia się do tworzenia płytki miażdzycowej jest też cytokiną, która tworzy proces angiogenezy i przyczynia się do AMD(mokrego).  Jak wyżej – zahamować.1039)ncbi.nlm.nih.gov/pubmed/22067048/
  • Badanie z którego wynika, że fibromodulina zwiększa angiogenezę i jej zahamowanie może przynieść korzyści zapewne i także w AMD. 1040)ncbi.nlm.nih.gov/pubmed/24355922
  • Poziomy SIRT1 są podwyższone w membranach plamki żółtej gdzie zachodzi neowaskularyzacja. Jej zahamowanie powoduje obniżenie wydzielania się cytokin proangiogenicznych. 1041)ncbi.nlm.nih.gov/pubmed/23135526
  • Amyloid beta powoduje neowaskularyzację w AMD poprzez aktywowanie wytwarzania VEGF, IL-8, MCP-1 przez komórki nabłonka pigmentu siatkówki. 1042)ncbi.nlm.nih.gov/pubmed/28429668
  • Amyloid beta powoduje zaburzenia w angiogenezie w komórkach nabłonka pigmentu siatkówki. U myszy brak enzymu neprylizyna(białko z grupy metaloproteinaz) powoduje degenerację komórek nabłonka pigmentu siatkówki oraz powstawanie złogów pod siatkówkowych co jest bardzo zbliżonym zjawiskiem,które występuje w AMD. 1043)ncbi.nlm.nih.gov/pubmed/21440663
  • W AMD niebieskie światło pobudza mikroglej który migruje w strone zewnętrznej części siatkówki. Pobudza także wrodzony układ odpornościowy oraz odkładanie się białek dopełniacza(C1q, C3, czynnik B, czynnik H, MAC) w zewnętrznej części siatkówki. Odkładanie się białek dopełniacza zostało zahamowane przez agoniste(czyli coś co pobudza) receptor serotoniowy 5HT1A. 1044)ncbi.nlm.nih.gov/pubmed/21467172
  • W AMD problemem jest zaburzona ścieżka sygnałowa genu/enzymu Nrf2 (odpowiedzialny za procesy antyoksydacyjne i detoks organizmu). Sugeruje się, że wpływając na negatywny regulator enzymu Nrf2 – Keap1 można przywrócić prawidłowe działanie Nrf2. 1045)ncbi.nlm.nih.gov/pubmed/24216314
  • U niemowlaków nie wykrywa się wogóle jakiejkolwiek gęstości optycznej pigmentu plamki żóltej i sugeruje się, że jest to związane z niedostateczną podażą karotenoidów w diecie. 1046)ncbi.nlm.nih.gov/pubmed/23652486
  • Ścieżka sygnałowa Wnt/Beta katenin odgrywa rolę patologiczną w stanach zapalnych siatkówki i neowaskularyzacji. Wykazano że bloker tej ścieżki – DKK-1(Dickkopf-1) jest obniżony i sugeruje się że może on służyć jako biomarker mokrej postaci AMD. 1047)ncbi.nlm.nih.gov/pubmed/28455497
  • Aktywacja LXR może chronić przed neowaskularyzacją naczyniówki. Ponadto chroni przed amyloidem Beta1-40 który powoduje stany zapalne w AMD(receptory te hamują NFkB) 1048)ncbi.nlm.nih.gov/pmc/articles/PMC3687521/ 1049)ncbi.nlm.nih.gov/pubmed/28361293 Receptory LXR odpowiadają za homeostazę(równowagę) cholesterolu, glukozy, detoksu kwasów żółciowych, za układ odpornościowy i funkcje neurologiczne 1050)ncbi.nlm.nih.gov/pubmed/7935418/.Aktywacja tych receptorów zbija stany zapalne poprzez obniżenie iNOS, IL-6, IL-1beta, COX-2, MCP-1, PGE-2, MMP-9 w makrofagach w odpowiedzi na lipopolisacharyd LPS.1051)ncbi.nlm.nih.gov/pubmed/15473848/1052)ncbi.nlm.nih.gov/pubmed/18323516/ . Substancje chemiczne które są agonistami(pobudzaczami) tych receptorów obniżają poziomy interferonu gamma, TNF alfa i cytokiny prozapalnej IL2 w limfocytach także można powiedzieć , ze pobudzenie tych receptorów hamuje praktycznie wszystkie czynniki powodujące stan zapalny w organizmie. LXR w kroplach do oka(pobudzacze tych receptorów – agoniści) powodują zmniejszenie uszkodzeń związanych z neowaskularyzacją naczyniówki w mokrej postaci tej choroby. Możliwe, że ich pobudzenie w tej chorobie wyreguluje poziomy cholesterolu (homeostazę lipidów). 1053)ncbi.nlm.nih.gov/pmc/articles/PMC4862829/
  • Mikroglej zaostrza neowaskularyzację naczyniówki. 1054)ncbi.nlm.nih.gov/pubmed/17909628/ Zatem należy go zahamować.
  • Redukcja migracji monocytów do siatkówki redukuje neowaskularyzację naczyniówki 1055)ncbi.nlm.nih.gov/pubmed/12882811/ 1056)ncbi.nlm.nih.gov/pubmed/12882810/
  • Zahamowanie HIF-1alfa i 2alfa hamuje angiogenezę w AMD i może być dobrą opcją leczniczą. 1057)ncbi.nlm.nih.gov/pubmed/23873332
  • Innym sposobem na zahamowanie neowaskularyzacji naczyniówkowej jest użycie czegoś, co zahamuje receptor aktywowanej C-kinazy 1 (RACK-1). 1058)ncbi.nlm.nih.gov/pubmed/27112838
  • Melanina chroni siatkówkę i naczyniówke przed toksycznością światła. 1059)ncbi.nlm.nih.gov/pubmed/16869503
  • Zahamowanie ścieżki alternatywnej dopełniacza nie tylko zapobiega rozwinięciu się chorób wzroku ale i również możę je cofnąć. 1060)ncbi.nlm.nih.gov/pubmed/27064393
  • Blokery ROCK (kinaza Rho) redukują neoangiogenezę oraz blokują stan zapalny i zwłóknienie. 1061)ncbi.nlm.nih.gov/pubmed/25626969
  • Czynnik wzrostu nerwów(NGF) w komórkach nabłonka pigmentu siatkówki pełni funkcje protekcyjną oraz regenerującą. 1062)ncbi.nlm.nih.gov/pubmed/21968016 Zatem logiczne jest ,że należy go czymś pobudzać.
  • Aceruloplasminemia to akumulowanie się żelaza w międzyinnymi siatkówce. W AMD dochodzi do wysokich poziomów transferryny w siatkówce jak i również wspomnianej wcześniej aceruloplasminemi. 1063)ncbi.nlm.nih.gov/pubmed/16639025
  • Inhibitory ROCK2 powoduje zahamowanie makrofagów typu 2 i zmianę polaryzacji na wytwarzanie makrofagów typu M1. Sugeruje się, że można tak skorygować imbalans w tego typu komórkach układu odpornościowcyh, który występuje w AMD. 1064)ncbi.nlm.nih.gov/pubmed/27254302
  • Białko p62 wzmaga autofagię oraz pobudza enzym Nrf2 1065)ncbi.nlm.nih.gov/pubmed/24667411
  • Zarówno Chlamydia pneumoniae jak i wirus CMV aktywują układ odpornościowy poprzez receptory TLR a te jak udowodniono na zwierzętach poza tym, że są obecne w komórkach nabłonka pigmentu siatkówki, powodują jego toksyczność. 1066)ncbi.nlm.nih.gov/pmc/articles/PMC4122127/. Zatem sprwadzenie czy nie ma bardzo wysokich przeciwciał w klasie IgG czy też wpo prostu podwyższonych w IgM przeciwko chlamydi pneumoniae może Cie naprowadzić na jedną z przyczyn powstania u Ciebie tej choroby.
  • MikroRNA-126 jest modulatorem angiogenezy i sugeruje się, że leki wpływające na nią mogą mieć zastosowanie lecznicze w AMD. 1067)ncbi.nlm.nih.gov/pubmed/27338342
  • Makrofagi zbierające się wokół neowaskularyzacji naczyniówki wykazują ekspresję receptorów histaminowych H4. Ich zahamowanie hamuje wyciek z naczyń krwionośnych i interwencja ta nie powoduje żadnej retinotoksyczności. 1068)ncbi.nlm.nih.gov/pubmed/24787705
  • Sugeruje się, że zahamowanie ścieżki sygnałowej NOTCH2 chroni komórki nabłonka pigmentu siatkówki przed uszkodzeniami wywołanymi promieniowaniem UVB. 1069)ncbi.nlm.nih.gov/pubmed/28560393
  • Brak ochrony antyoksydacyjnej MnSOD prowadzi do dysfunkcji obrony (przed stresem oksydacyjnym) komórek nabłonka pigmentu siatkówki. Prowadzi to do zaburzeń naczyniówki i śmierci komórek fotoreceptorów 1070)ncbi.nlm.nih.gov/pubmed/24985474
  • Jedno z badań sugeruje, że wyższa gęstość kośćca zmniejsza ryzyko AMD(zapewne za sprawą wysokiego estrogenu lub normalnego poziomu testosteronu). 1071)Seitzman RL, Mangione CM, Cauley JA, Ensrud KE, Stone KL, Cummings SR, et al.; Study of Osteoporotic Fractures Research Group. Bone mineral density and age-related maculopathy in older women. J Am Geriatr Soc 2007;55: 740–746.
  • Cytokina prozapalna TNF alfa (jej nadmiar) prowadzi do neowaskularyzacji naczyniówki poprzez nadmierne pobudzenie czynnika VEGF w komórkach nabłonka pigmentu siatkówki. 1072)ncbi.nlm.nih.gov/pubmed/26900328
  • Hiperglikemia stymuluje czynnik VEGF i doprowadzić może do neowaskularyzacji naczyniówki 1073)ncbi.nlm.nih.gov/pubmed/24780853
  • Sugeruje się, żę krystaliny(alfa A i alfa B) pełnią rolę protekcyjną w praktycznie wszystkich chorobach oczu (w tym i w AMD), tłumią stan zapalny, pełnią funkcje neuroprotekcyjna i hamują formowanie się alfa amyloidu. Zapobiegają takżę śmierci fotoreceptorów. Jagody zwiększają poziomy Beta B2 krystaliny. (jest to krystalina znajdowana w siatkówce jak i w komórkach zwojowych siatkówki które chronią ten element oka). 1074)sci-hub.hk/10.1016/j.preteyeres.2014.06.004
  • Podniesiony czynnik GDNF w siatkówce chroni przed zniszczeniami przez lipidy,białka i zniszczeniami DNA (bardziej w tym przypadku redkuje zniszczenia wywołane przez stres oksydacyjny). 1075)ncbi.nlm.nih.gov/pubmed/17935603
  • Chemokina CXCR3 jest związana z hamowaniem angiogenezy. U osób z AMD są jej wyraźnie niższe poziomy (na leukocytach we krwii) i sugeruje się, że może to prowadzić do zwiększonej angiogenezy w neowaskularyzacji naczyniówki. 1076)ncbi.nlm.nih.gov/pubmed/24812555
  • GDNF,BDNF i PEDFT to czynniki troficzne dla neuronów(pobudzają je do życia i rozwoju)  pobudzają transportery cynku. Także należy je pobudzać,aby przeciwdziałać niedoborom tego najważniejszego minerału w tej chorobie. 1077)ncbi.nlm.nih.gov/pubmed/18326752
  • Ścieżka sygnałowa WNT/beta katenin, która została pobudzona aktywuje ścieżkę sygnałową PI3K/akt co doprowadza do efektu Warburga i produkcji mleczanu. Produkcja mleczanu pobudza czynnik VEGF(dokładnie to się dzieje między innymi podczas intensywnych ćwiczeń) co jest jednym z problemów z neowaskularyzacją naczyniówki i ciężkiej postaci AMD. Receptory PPAR gamma działają odwrotnie do ścieżki WNT/beta katenin pełniąc funkcje przeciwzapalną. Agoniści PPAR gamma po prostu obniżają aktywność stanu zapalnego jak i ścieżki WNT/beta katenin i sugeruje się, że mogą być dobrą opcją leczniczą w mokrej formie AMD. 1078)ncbi.nlm.nih.gov/pubmed/28887057.
  • Zaburzenia ścieżki ERK1/2 prowadzą do degeneracji siatkówki w tym i zaburzeń poziomu retinoidów i upośledzenia wzroku. Wyniki badań sugerują, że jej pobudzenie może być jedną ze strategii leczniczych w AMD. 1079)ncbi.nlm.nih.gov/pubmed/29038159
  • Receptory mGlu1 (mGluR1) chronią komórki zwojowe siatkówki przed neurodegeneracją(w tym badaniu przed toksycznością glutaminianu). 1080)ncbi.nlm.nih.gov/pubmed/28918254
  • Zahamowanie receptorów P2X7 które nadmiernie pobudzone, powodują zaburzenia sygnalizacji wapnia co przyczynia się do śmierci neuronów i komórek mikrokrążenia w stanach niedokrwiennych i niedotlenienia, może mieć funkcje lecznicze. 1081)ncbi.nlm.nih.gov/pubmed/25998275
  • Ścieżka sygnałowa EPAC-Rap1 hamuje VEGF tak samo jak pobudzenie ścieżki Ras/MEK/ERK. Ponadto EPAC-Rap1 pomaga w przywróceniu bariery krew-siatkówka. 1082)ncbi.nlm.nih.gov/pubmed/29158262
  • TIMP-2 hamuje metaloproteinazy MMP-1,2,3,7,8,9,10,13,19 i inne. 1083)ncbi.nlm.nih.gov/pubmed/20533908/
  • A2E stymuluje chemokiny i cytokiny prozapalne(IL-1beta, IL-2, IL-6, TNF alfa i VEGF-A) w komórkach nabłonka pigmentu siatkówki1084) ncbi.nlm.nih.gov/pubmed/23840644Zatem jej obniżenie możę być przydatne.
  • VIP-1(naczyniowa molekuła adhezyjna 1) to białko znajdujące się w plamce żółtej, siatkówce i w naczyniach krwionośnych zlokalizowanych wokół naczyniówki. Jego zahamowanie zmniejsza wielkość neowaskularyzacji naczyniówki i akumulacji makorfagów w tym rejonie oraz obniża poziomy czynników zapalnych TNF alfa, MCP-1, ICAM-1. 1085)ncbi.nlm.nih.gov/pmc/articles/PMC3687510/
  • Agoniści(czyli coś co pobudza) receptora serotoninowego 5-HT(1A) chronią siatkówkę przed światłem niebieskim i niszczeniem jej przez wolne rodniki 1086)ncbi.nlm.nih.gov/pubmed/21087971
  • Ceruloplazmina może chronić oko podczas ekspozycji na światło 1087)ncbi.nlm.nih.gov/pmc/articles/PMC3695389/
  • W Alzheimerze, gdzie występuje nadmiar amyloidu beta i fosforylacja białka Tau występuje niedobór SOD1 – sugeruje się, że aktywacja tej dysmutazy przyniesie poprawę w tej chorobie zatem można przypuszczać,że i w AMD powinna być poprawa. 1088)ncbi.nlm.nih.gov/pubmed/22072713
  • Neowaskularyzacja naczyń krwionośnych(CNV) to cecha mokrego podtypu AMD. Zahamowanie ścieżki sygnałowej mTOR(i tym samym zwiększenie autofagii czyli procesu usuwania zbytecznych/uszkodzonych składników i substancji z komórki) może zwiększać neuroprotekcję oka w tym schorzeniu. 1089)ncbi.nlm.nih.gov/pubmed/28918027
  • Czynnik wzrostu wiążący heparynę (HB-EGF) chroni komórki fotoreceptorowe przed światłem i tym samym śmiercią (redukuje ilość wolnych rodników). 1090)ncbi.nlm.nih.gov/pubmed/23640042
  • Stwierdza się, że zablokowanie receptora cytokiny zapalnej IL-6 hamuje zwłóknienie podsiatkówkowe w AMD. 1091)ncbi.nlm.nih.gov/pubmed/24790857
  • Aktywacja telomerazy(w tym badaniu już opracowano suplement który zapewne będzie kiedyś sprzedawany za tysiące złotych w PL) przynosi znaczną poprawę plamki żółtej w przypadku AMD już po 6 miesiącach. 1092)ncbi.nlm.nih.gov/pubmed/26869760 . O samej telomerazie więcej tutaj.
  • Brak metaloproteinazy(czyli też jej zahamowanie) 13 zaburza formowanie się neowaskularyzacji naczyniówki. 1093)ncbi.nlm.nih.gov/pubmed/20700625
  • SIRT1(Sirtuina 1) reguluje stan zapalny poprzez zahamowanie ścieżki sygnałowej NF-kB(pobudzonej przez amyloid beta) co jest pozytywnym aspektem w AMD. Ponadto amyloid bea powoduje rozszczelnienie bariery pigmentu nabłonka siatkówki i aktywowanie cytokin zapalnych IL-6, IL-8 oraz metaloproteinazy MMP-9 czemu przeciwdziała SIRT1. 1094)ncbi.nlm.nih.gov/pubmed/24036938
  • Agoniści(czyli coś co pobudza daną rzecz) receptorów dopaminowych D2 i D3 wykazują ochroną przed uszkodzeniami siatkówki przez światło. 1095)ncbi.nlm.nih.gov/pubmed/26213307

 

 

Zwyrodnienie plamki żółtej (AMD) a leczenie syntetykami

  • Jedną z terapi jest stosowanie prostaglandyny PGE1 do oka (w przypadku suchej odmiany AMD) – terapia działa poprawiająć wzrok,zatem odrazu można stwierdzić, że spory stan zapalny jest tu jednym z głównych problemów. 1096)ncbi.nlm.nih.gov/pubmed/15763436
  • Agoniści receptora 5HT(1A) redukują akumulację lipofuscyny i chronią siatkówkę przed stresem oksydacyjnym oraz dysfunkcją mitochondriów. 1097)ncbi.nlm.nih.gov/pubmed/22509307
  • Blokery receptorów IGF-1 mogą być pomocne w przypadku neowaskularyzacji plamki żóltej włączając w to mokrą postać AMD. 1098)ncbi.nlm.nih.gov/pubmed/18515591
  • Egzogenna L-DOPA działa protekcyjne w AMD (ta forma dopaminy jest produktowana w tkankach pigmentu takich jak komórki nabłonka pigmentu siatkówki) 1099)ncbi.nlm.nih.gov/pubmed/26524704
  • Minocyklina(antybiotyk) poprawia funkcje wzrokowe w cukrzycowym obrzęku plamki żółtej (hamuje mikroglej). Ten sam problem z mikroglejem pojawia się także i w AMD 1100)ncbi.nlm.nih.gov/pubmed/22589436 gdzie antybiotyky ten hamuje napływ mikrogleju do fotoreceptorów tym samym chroniąc je w tej chorobie. 1101)ncbi.nlm.nih.gov/pubmed/21763674 Dzięki temu poprawia stan wzroku w AMD. 1102)ncbi.nlm.nih.gov/pubmed/19936204
  • Okulary odbijające światło niebieskie(tj.chroniące przed nim) są znacznie lepsze niż jakiekolwiek inne w protekcji oczu osób z AMD. 1103)ncbi.nlm.nih.gov/pubmed/21668780
  • Akupunktura punktów Guangming (GB 37), Jingming(BL 1), Cuanzhu (BL 2), Taiyang (EX-HN 5), Sibai (ST 2), Yangbai (GB 14), Tongziliao (GB 1), Fengchi (GB 20), Ganshu (BL 18), Shenshu (BL 23) and Fenglong (ST 40) pomaga lepiej niż injekcje z entodonu,wit.C i wit.E w przypadku AMD. 1104)ncbi.nlm.nih.gov/pubmed/21355157
  • Krople do oczu z NGF(czynnik wzrostu nerwów) poprawiają jakość widzenia już po 3 miesiącach stosowania – tylko skąd je dostać? 1105)ncbi.nlm.nih.gov/pubmed/20061666
  • Pobudzając receptor serotoniowy 5HT(1A) można ochronić siatkówkę przed fotoksydacyjnym zniszczeniem powodowanym przez niebieskie światło. 1106)ncbi.nlm.nih.gov/pubmed/21087971
  • Technika akupunkturowa zwana „emayaoling acupuncture” punktów Cuanzhu (BL 2) i Yiming (EX-HN 14) – wkłucie na 30min oraz tzw szybkie nakłuwanie punktów Ganshu (BL 18), Pishu (BL 20) i Shenshu (BL 23). Wykazuje naprwadę dobre rezultaty w poprawie wzroku w AMD. 1107)ncbi.nlm.nih.gov/pubmed/29354994
  • Deferiprone to chelator żelaza(czyli coś co usuwa go z organizmu). Redukuje on dzięki temu spłycanie się warstw siatkówki siatkówki i obniża stres retikulum endoplazmatycznego. 1108)ncbi.nlm.nih.gov/pubmed/26133718
  • Używanie inhibitorów pompy protonowej może wywoływać halucynacje w syndromie Charlsa Bonneta – a ten przecież jest połączony że tak powiem z AMD. 1109)ncbi.nlm.nih.gov/pubmed/28829845
  • Deferypron to związek chelatujący żelazo, który pozwala pozbyć się nadmiaru tego metalu z siatkówki zmniejszając przez to stres oksydacyjny. 1110)ncbi.nlm.nih.gov/pubmed/21051716
  • Pobudzenie autofagi przez rapamycynę obniża stres oksydacyjny i poziom wolnych rodników i proces ten chroni przed akumulacją lipofuscyny. 1111)ncbi.nlm.nih.gov/pubmed/25484094
  • Dożylna immunoglobulina hamuje angiogenezę oraz hamuje stan zapalny, także może być bardzo przydatna w przypadku mokrego AMD. 1112)ncbi.nlm.nih.gov/pubmed/26925256
  • Jeden z leków antyhistaminowych hamuje formowanie się porów przepuszczalności mitochondrialnej chroniąc je tym samym przed toksycznością amyloidu beta – jak czytam coś takiego to odrazu wiem, że problemem są najprawdopodobniej pobudzone komórki tuczne, które zdecydowanie lepiej hamować używając do tego różnych naturalnych substancji zamiast jednego syntetyku który hamuje tylko 1 lub max.2 wybrane receptory(z 4 ) histaminowych. 1113)Porter T, Bharadwaj P, Groth D, Paxman A, Laws SM, Martins RN, Verdile G (2016) The effects of latrepirdine on amyloid-beta aggregation and toxicity. J Alzheimers Dis 50:895–905
  • Dożylna immunoglobulina G(składająca się z 60% IgG1) hamuje angiogenezę i może wykazywać pozytywne działanie w mokrej postaci AMD. 1114)ncbi.nlm.nih.gov/pubmed/26925256
  • Deferiprone(dobry chelator żelaza z siatkówki oka),deferasirox i salicylaldehyde isonicotinoyl hydrazone (SIH)(poza chelatacją dobry antyoksydant który ochrania siatkówkę oka i na niego bym się raczej nastawiał) to chelatory żelaza które mogą być pomocne w AMD. 1115)ncbi.nlm.nih.gov/pmc/articles/PMC3695389/
  • Fullerenol (C60) to syntetyczny związek, który hamuje stres oksydacyjny(ma właściwości antyoksydacyjne) w komórkach nabłonka pigmentu siatkówki oraz aktywuje SIRT1(co też hamuje w/w stres). 1116)ncbi.nlm.nih.gov/pubmed/24845634
  • Syntetyki anty HIV które hamują nukleozydową odwrotną transkryptazę (NRTI) hamują receptory P2X7 hamując tym samym aktywację inflammasomu NRLP3 . co w modelu mysim jest efektywne w przypadku neowaskularyzacji naczyniowki i atrofii geograficznej. 1117)ncbi.nlm.nih.gov/pubmed/25414314
  • Prostaglandyna PGE1(to ta przeciwzapalna, PGE-2 jest zapalną i powoduje ból) użyta w postaci zastrzyków powoduje poprawę widzenia w przypadku suchego zwyrodnienia plamki żółtej. 1118)ncbi.nlm.nih.gov/pubmed/2724867
  • Grubość plamki żółtej oka zmienia się(zwiększa) po zastosowaniu blokerów cytokiny zapalnej TNF alfa(terapia musi trwać minimum 3 miesiące). 1119)ncbi.nlm.nih.gov/pubmed/24366669. W innym badaniu potwierdzono, że zahamowanie cytokiny TNF alfa w przypadku mokrego typu AMD przynosi na tyle dobrą poprawę, że można odstawić leki anty VEGF 1120)ncbi.nlm.nih.gov/pubmed/27065854
  • Blokowanie receptorów Adenozyny (A2A/A2Ar) w mikrogleju zwiększa przeżywalność komórek fotoreceptorowych. Sugeruje się, że antagoniści w/w receptorów mogą być skuteczną terapią. Ja od siebie dodam, że po co co redukować toksyczne działanie mikrogleju?lepiej zahamować wydzielanie mikrogleju!(bardzo dobrze nadaje się do tego naltrekson w niskich dawkach – syntetyk, który w wysokich dawkach stosowany jest między innymi w przypadku leczenia alkoholizmu). 1121)ncbi.nlm.nih.gov/pubmed/29396515
  • Wykazano, że pacjenci przyjmujący L-dopę mają mniejsze ryzyko AMD. Wskazano, że zależne jest to od GPR143(gen odpowiedzialny za pigment oczu i skóry). 1122)sci-hub.hk/10.1089/jop.2016.29007.bsm
  • Syndrom Charlesa Bonneta może być skutecznie powstrzymany antydepresantami(SSRI) czyli problemem może być niedobór serotoniny lub zbyt szybki jej rozkład w mózgu. 1123)ncbi.nlm.nih.gov/pubmed/17446204
  • Doksycyklina to antybiotyk, który hamuje polaryzację makrofagów(ich zmianę) do typu M2 który działa proangiogennie. Może być zatem wykorzystana do zahamowania angiogenezy w mokrej postaci AMD. 1124)ncbi.nlm.nih.gov/pubmed/24505138 Ponadto redukuje ilość podawania śródków anty VEGF. Jest to dla mnie o tyle interesujące, gdyż był to jedyny antybiotyk, który brałem przez krótki czas w bardzo mocnej dawce,w czasie kiedy miałem poważne problemy z infekcją bakterią Bartonella i złagodził o u mnie problemy chorobowe. 1125)ncbi.nlm.nih.gov/pubmed/29361515
  • Zahamowanie receptora histaminowego H4 może być nowym sposobem walki ze zwyrodnieniem plamki żółtej. 1126)ncbi.nlm.nih.gov/pubmed/25774332 Osobiście wolę zahamować u kogoś komórki tuczne które pobudzają histaminę niż tylko receptory H1, 2, 3 lub 4 – można to zrobić kwercytyną, luteoliną i wieloma innymi naturalnymi środkami czy też mocnym syntetykiem do tego celu przeznaczonym – nalcromem.
  • Beta estradiol(betaE2) chroni siatkówkę przed zniszczeniem związanym z ekspozycją na światło poprzez działanie antyoksydacyjne(pobudza geny SOD,CAT i Gpx oraz białka Trx i Nrf2). 1127)ncbi.nlm.nih.gov/pubmed/250388761128)ncbi.nlm.nih.gov/pubmed/26211446
  • Estrogen reguluje funkcje komórek nabłonka pigmentu siatkówki i utrzymanie jego normalnego lub wysokiego poziomu podczas stresu oksydacyjnego może przyczynić się do powstrzymania powstania AMD. 1129)ncbi.nlm.nih.gov/pubmed/16029884
  • Estrogen E2(estradiol) zwiększa poziomy metaloproteinazy MMP-2 2.2x w komórkach nabłonka pigmentu siatkówki. Stwierdza się, że zarówno niedobór jak i nadmiar estrogenu przyczynia się do dysfunkcji w/w komórek. 1130)ncbi.nlm.nih.gov/pubmed/12506055 Jego niedobór powoduje zgrubienie membrany Brucha oraz odkładanie się złogów w siatkówce. U myszy z brakiem receptorów estrogenowych wykryto zwiększone ilości kolagenu w komórkach nabłonka pigmentu siatkówki oraz obniżone poziomy metaloproteinzy MMP-2. Sugeruje to bardzo ważną rolę tego hormonu w rozwoju tego schorzenia(tj.jego niskie poziomy predysponują do AMD – przynajmniej u płci żeńskiej). 1131)ncbi.nlm.nih.gov/pubmed/19799898 Polimorfizm receptora estrogenowego alfa jest związany z wyższym ryzykiem AMD. Taki np.tamoksifen – chemioterapeutyk używany w przypadku raka piersi – obniżając poziomy estrogenu uszkadza siatkówkę. 1132)sci-hub.hk/10.3109/02713683.2014.925933. W tej chorobie obecne są zaburzenia białka YKL-4 w siatkówce oka, które to regulowane jest przez estrogen(estradiol). Zatem menopauza u kobiet będzie się przyczyniać do powstawania AMD. 1133)ncbi.nlm.nih.gov/pubmed/12657616. Możliwe że i niedobór estrogenu zwłaszcza u kobiet po menopauzie przyczynia się zatem do AMD 1134)ncbi.nlm.nih.gov/pubmed/14567012 a badania potwierdzają, że podawanie estrogenu z zewnątrz do organizmu (czyli zastępcza terapia hormonalna) zmniejsza ryzyko AMD. 1135)sci-hub.hk/10.3109/02713683.2014.925933
  • EPO(środek dopingujący – słynny u kolarzy, który wykazuje działanie antyoksydacyjne, przeciwzapalne i neuroprotekcyjne powoduje redukcję śmierci komórek pigmentu oka o 88% nawet kiedy jest już zaaplikowana w momencie kiedy pojawił się stres oksydacyjny. Sugeruje się, że może mieć zastosowanie lecznicze w suchej odmiane AMD. 1136)ncbi.nlm.nih.gov/pubmed/19151655. EPO znajduje się w nabłonku pigmentu siatkówki, w komórkach zwojowych jak i fotoreceptorach. Pełni tam funkcje przeciwapoptyczną(pobudza białka Bcl-xl i Bcl-2), przeciwzapalną czy też neuroregeneracyjną. Przechodzi barierę krew-siatkówka,pobudza dysmutazę nadtlenkową. Chroni połączenia ścisłe chroniąc tym samym barierę krew-siatkówka. Ponadto może obniżyć poziomy czynnika VEGF i HIF-1alfa i tym samym przeciwdziałać neowaskularyzacji. Pomimo tego jedno badanie mówi, że W mokrej odmianie EPO jest na wysokim poziomie takżę tutaj może nie mieć ono zastosowania. 1137)ncbi.nlm.nih.gov/pmc/articles/PMC5129866/ EPO tak samo jak VEGF jest nadmiernie podniesione w siatkówce. Z badania wynika, że wyższy poziom EPO w ciele szklistym(jednak nie jest ona zwiększona w krwii) jest związany z wyższą aktywnością czynnika VEGF. Stężenie EPO w ciele szklistym jest o 4-16x wyższe niż w krwii. 1138)ncbi.nlm.nih.gov/pmc/articles/PMC4016716/ EPO obniża stany zapalne poprzez obniżenie cytokin zapalnych TNF alfa, IL-6 i ICAM-1 oraz zwiększa poziomy przeciwzapalnej cytokiny IL-10. Jest czynnikiem neurotroficznym w siatkówce i przycyznia się do ochrony komórek neuronów w tej części oka. Neuroprotekcyjne właściwości tej substancji polegają na zahamowaniu apoptozy komórkowej, redukcji glutaminianu i wolnych rodników, zahamowaniu rekrutacji komórek macierzystych, cytokin zapalnych i utrzymanie prawidłowej autoregulacji układu krwionośnego/naczyniowego. Ponadto przenika przez barierę krew-mózg i krew-siatkówka w ilościach terapeutycznych dzięki czemu może być tez podawane systemowo(dożylnie). 1139)sci-hub.hk/10.1016/j.mehy.2008.09.055

 

 

Zwyrodnienie plamki żółtej (AMD) – inne interwencje wspomagające

  • Okulary odbijające światło niebieskie(tj.chroniące przed nim) są znacznie lepsze niż jakiekolwiek inne w protekcji oczu osób z AMD. 1140)ncbi.nlm.nih.gov/pubmed/21668780
  • Akupunktura punktów Guangming (GB 37), Jingming(BL 1), Cuanzhu (BL 2), Taiyang (EX-HN 5), Sibai (ST 2), Yangbai (GB 14), Tongziliao (GB 1), Fengchi (GB 20), Ganshu (BL 18), Shenshu (BL 23) and Fenglong (ST 40) pomaga lepiej niż injekcje z entodonu,wit.C i wit.E w przypadku AMD. 1141)ncbi.nlm.nih.gov/pubmed/21355157
  • Światło infrared 670nm stosowane przez 15min dziennie po miesiącu poprawia funkcje siatkówki w AMD(ma działanie przeciwzapalne i redukuje peroksydację lipidów. 1142)ncbi.nlm.nih.gov/pubmed/23181358). 1143)ncbi.nlm.nih.gov/pubmed/28129566 W innym badaniu wykazano że redukuje ono poziomy komponentu C3(marker stanu zapalnego w siatkówce) oraz stan zapalny prawdopodobnie poprzez redukcję cyklooksygenazy COX. 1144)ncbi.nlm.nih.gov/pubmed/23469078
  • Przezskórna stymulacja mikroprądami może spowolnić postęp suchego jak i mokrego zwyrodnienia plamki zółtej(taka stymulacja wiem, że jest wykonywana w Warszawie). 1145)ncbi.nlm.nih.gov/pubmed/26719667
  • Hipotermia obniża wydzielanie VEGF w komórkach nabłonka pigmentu siatkówki(przeciwdziała hipoksji czyli niedotlenieniu). 1146)ncbi.nlm.nih.gov/pubmed/20805126
  • LLLT(zimny laser niskiego poziomu – zdecydowanie polecam to urządzenie!) znaczaco poprawia wzrok bez skutków ubocznych u osób z AMD(z wysiękową postacią gdzie przyczynia się do zahamowania obrzęku i krwawienia). 1147)ncbi.nlm.nih.gov/pubmed/18588438
  • Hiperbaria przynosi znaczną poprawę w przypadku osób z AMD – ciśnienie od 1.5 do 1.75bara. 1148)ncbi.nlm.nih.gov/pubmed/20462142Spowalnia hiperwaskularyzację naczyniówki co wspomoże leczenie AMD mokrego 1149)ncbi.nlm.nih.gov/pubmed/26094287
  • Ćwiczenia fizyczne u osób z AMD są o tyle dobre, że zapobiegają zatorowi żył siatkówki,obniżają nadciśnienie i poprawiają cukrzycę(jeśli ta choroba jest obecna). 1150)ncbi.nlm.nih.gov/pubmed/19422963. Aktywność fizyczna zmniejsza ryzyko wczesnego jak i późnego typu AMD. 1151)ncbi.nlm.nih.gov/pubmed/28549846. Wykazano też, że lekki sport redukuje stres oksydacyjny w siatkówce(cofa zmiany powstałe z uszkodzenia komórek w siatkówce) – wstrzymałbym się jednak z ćwiczeniami w trakcie mokrej odmiany AMD. 1152)ncbi.nlm.nih.gov/pubmed/26404251
  • Fotogromchowe soczewki w okularach o odcieniu szarym bądz brązowym lepiej chronią siatkówkę oka przed niebieskim światłem niż soczewki o zabarwione na niebiesko. 1153)ncbi.nlm.nih.gov/pubmed/27880954
  • Filtry światła niebieskiego działają fotoprotekcyjnie hamując postęp geograficznej atrofii w AMD. 1154)ncbi.nlm.nih.gov/pubmed/25198169
  • Mokra postać AMD związana jest z krótszym snem. Sugeruje się jego poprawę(wydłużenie). 1155)ncbi.nlm.nih.gov/pubmed/26786476
  • Zablokowanie ekspozycji oczu na niebieskie światło obniża wydzielanie się czynników angiogennych jak VEGF czy też bFGF. 1156)ncbi.nlm.nih.gov/pubmed/29096624
  • Terapia ozonowo-tlenowa (w tym przypadku u 20 osób zastosowano dawkę 1500-2000 mikrogramów na sesję długość trwania kuracji – 4 tygodnie). Większość pacjentów zanotowała poprawę stanu wzroku. 1157)ncbi.nlm.nih.gov/pubmed/2250978
  • Fotomodulacja może być pomocna w leczeniu suchej odmiany AMD (zmniejsza między innymi rozmiar druz i ich grubość) 1158)ncbi.nlm.nih.gov/pmc/articles/PMC5484346/

 

 

Pozostałe informacje na temat zwyrodnienia plamki żółtej (AMD)

ncbi.nlm.nih.gov/pmc/articles/PMC4541342/ – bardzo dobry artykuł na temat roli amyloidu beta w AMD
ncbi.nlm.nih.gov/pmc/articles/PMC4992630/ – lista mikroRNA wpływających na ryzyko AMD
sciencedirect.com/science/article/pii/S1010660X16000227?via%3Dihub – najlepsze opracowanie dotyczace genów ryzyka AMD
rupharma.com/visomitin/ – Wizomitin w AMD (substancja/preparat do wspomagania leczeni w postaci kropli do oczu)

 

 

Zwyrodnienie plamki żółtej (AMD) – wnioski końcowe

Gratuluje,dobrnąłeś do końca ewentualnie przewinąłeś artykuł aby przeczytać mój komentarz końcowy na temat tej choroby. Od czego bym zaczął jesli zachorowałbym kiedykolwiek na AMD?Napewno od porządnego zdiagnozowania współwystępujących problemów takich jak infekcje (wirusy CMV, EBV, HHV-6 i bakteria chalmydia to taki pakiet minimum), napewno status witaminy B9(folian) czy też b12,homocysteiny i kwasu moczowego. Myślę, że wykonałbym również prowokacje jakimś syntetycznym chelatorem metali ciężkich (prowokacja jest to podanie 1-2 bardzo wysokich dawek syntetycznego preparatu wyciągającego metale ciężkie z tkanek/komórek w celu zrobienia badania na obecność metali ciężkich we krwii) aby sprawdzić czy np. problem z ołowiem czy rtęcią mnie konkretnie dotyczy. W miedzyczasie napewno zrobiłbym także badanie moczu na obecność metali gdyż ołów często wychodzi podwyższony właśnie w tym płynie gdyż nerki to naturalna droga detoksu tego metalu ciężkiego. Dieta?zdecydowanie tak – zlikwidowałbym wszystkie potencjalne czynniki powodujące stany zapalne typu przetworzone mąki, makarony, nabiał, cukier i ewentualnie alergeny oraz nietolerancje pokarmowe. Tanią opcją poprawy mikrobiomu jest nie tylko dorzucanie dużej ilości warzyw liściastych do każdego posiłku ale też chodzenie spać o 22 (jedząć o 1900 ostatni posiłek) – taki system powoduje nie tylko prawidłowy czas wytwarzania naturalnej melatoniny w organizmie który przypada właśnie na ten okres ale i również jeśli zjesz kolejny posiłek o 7 rano będziesz na 'głodzie’ 12godzin a jest to pewnego rodzaju krótka głodówka(dieta typu intermittent fasting) która bardzo dobrze wpływa na mikrobio oraz polepsza ewentualne problemy z insulinoodpornością czy też z wysokimi poziomami cukru we krwi z rana(taka interwencja sprzyja regulacji kortyzolu z rana co ma wpływ na cukier i insulinę). Produkty diety które napewno bym uwzględnił w jadłospisie? 7gram czystych kwasów omega-3, żółtka jajek najelpiej ekologicznych na surowo w celu dostarczenia choliny i zeaksantyny z luteiną plus różnorodnosć warzyw liściastych tak jak wyżej już napisałem – do każdego posiłku. Napewno zielona herbata – 4-5x dziennie i oliwa z oliwek do każdego posiku – obydwa produkty pomagają usuwać amyloid beta lub hamować jego powstawanie. 1159)ncbi.nlm.nih.gov/pubmed/234141281160)ncbi.nlm.nih.gov/pubmed/23831960

 

Jeśli chodzi o suplementację na pewno d3 w dawce 10tys jednostek dziennie co wspiera usuwanie złogów amyloidu beta oraz zniweluje stany zapalne 1161)newsroom.ucla.edu/releases/scientists-pinpoint-how-vitamin-229702, cynk w dawce 30-50mg dziennie w formie cytrynianu cynku a nie jakiejś śmiechu wartej niewchłanialnej formie typu tlenek, na pewno kompleks witamin B(aktywne formy , może być firma jarrows z allegro lub coś z tego co polecam z zakładki 'suplementy i zioła które polecam’ na górze tego bloga), napewno krople do oczu z karnozyną oraz małe dawki kwasu alfa liponowego (ALA) typu 25mg co 3 godziny jak i również suplement vinpocetine(winpocetyna w dawce 3x 10mg dziennie, jeśli jest to forma sucha) i melatonina 6mg na noc. Wszystko to i co wyżej napisałem ma na celu poprawę transporterów cynku, pozbywanie się lipofuscyny,zahamowanie tworzenia się a może i nawet cofnięcie druz i poprawę cyrkulacji w gałce ocznej. Wolne rodniki, pobudzony układ dopełniacza, pobudzone inflammasomy NLRP3 i cytokiny przeciwzapalne i wiele innych rzeczy które się dzieją w AMD to efekt domina – jeden element pobudza całą resztę (naturalnie przy udziale mocnych niedoborów, potęgowaniu stanów zapalnych i dodatkowo niesprzyjającej genetyki lub infekcji).

 

Myślę, że po wdrożeniu wszystkiego co powyżej prędzej czy później będziesz musiał sięgnąć po syntetyczne chelatory żelaza które polecane są w artykule – uważam(na podstawie zgromadzonego materiału), że to właśnie ten minerał jest w wielu przypadkach jedną z głównych przyczyn powstawania tej choroby. Zatem powodzenia – bezalkoholowego i bezpapierosowego czasu przywracania organizmu do ładu Ci życzę!.

 

 

Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!

Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic

Obserwuj mnie na instagramie www.instagram.com/premyslaw84

Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”

Literatura

Literatura
1ncbi.nlm.nih.gov/pubmed/10798642
2ncbi.nlm.nih.gov/pubmed/26738356
3ncbi.nlm.nih.gov/pubmed/19592102
4ncbi.nlm.nih.gov/pubmed/22577773
5ncbi.nlm.nih.gov/pubmed/21205373
6ncbi.nlm.nih.gov/pubmed/6145300
7ncbi.nlm.nih.gov/pubmed/27159771
8ncbi.nlm.nih.gov/pubmed/25871947
9ncbi.nlm.nih.gov/pubmed/16488959
10, 453ncbi.nlm.nih.gov/pubmed/25633305
11ncbi.nlm.nih.gov/pubmed/27195086
12sci-hub.hk/10.1016/j.diabres.2016.01.016
13sci-hub.hk/10.1002/path.4266
14, 15ncbi.nlm.nih.gov/pubmed/24370621
16ncbi.nlm.nih.gov/pubmed/16847292
17, 134ncbi.nlm.nih.gov/pubmed/22535267
18, 99, 120, 145ncbi.nlm.nih.gov/pubmed/26923802
19, 190ncbi.nlm.nih.gov/pubmed/20059996/
20ncbi.nlm.nih.gov/pubmed/23404120
21ncbi.nlm.nih.gov/pubmed/27125427
22sci-hub.hk/10.1016/j.ophtha.2016.10.023
23ncbi.nlm.nih.gov/pubmed/28910205
24ncbi.nlm.nih.gov/pubmed/29093709
25, 203, 258ncbi.nlm.nih.gov/pubmed/28902341
26, 204, 250ncbi.nlm.nih.gov/pubmed/27046391
27, 205, 249ncbi.nlm.nih.gov/pubmed/19577563
28ncbi.nlm.nih.gov/pubmed/16600942
29ncbi.nlm.nih.gov/pubmed/15364212
30, 88ncbi.nlm.nih.gov/pubmed/25380250
31ncbi.nlm.nih.gov/pubmed/15965958
32, 445, 874ncbi.nlm.nih.gov/pmc/articles/PMC3824279/
33ncbi.nlm.nih.gov/pubmed/9761302
34ncbi.nlm.nih.gov/pubmed/25903050
35ncbi.nlm.nih.gov/pubmed/28004443
36ncbi.nlm.nih.gov/pubmed/26760997
37ncbi.nlm.nih.gov/pubmed/18976665
38sci-hub.tv/10.1007/s11010-013-1908-z
39ncbi.nlm.nih.gov/pubmed/25769246
40ncbi.nlm.nih.gov/pubmed/25335979
41ncbi.nlm.nih.gov/pubmed/24965385
42ncbi.nlm.nih.gov/pubmed/25955815
43ncbi.nlm.nih.gov/pubmed/23922739
44 ncbi.nlm.nih.gov/pubmed/26193917
45, 1108ncbi.nlm.nih.gov/pubmed/26133718
46ncbi.nlm.nih.gov/pubmed/24679031
47ncbi.nlm.nih.gov/pubmed/21920607
48ncbi.nlm.nih.gov/pubmed/26049887
49ncbi.nlm.nih.gov/pubmed/28886597
50ncbi.nlm.nih.gov/pubmed/24502821
51ncbi.nlm.nih.gov/pubmed/19878106
52ncbi.nlm.nih.gov/pubmed/22570607
53ncbi.nlm.nih.gov/pubmed/21851605
54ncbi.nlm.nih.gov/pubmed/22732472
55ncbi.nlm.nih.gov/pubmed/28961846
56ncbi.nlm.nih.gov/pubmed/28655032
57, 142ncbi.nlm.nih.gov/pubmed/12678277
58ncbi.nlm.nih.gov/pubmed/19234096
59ncbi.nlm.nih.gov/pubmed/25856252
60ncbi.nlm.nih.gov/pubmed/26049822
61ncbi.nlm.nih.gov/pubmed/24447786
62, 185ncbi.nlm.nih.gov/pubmed/29183319
63, 838ncbi.nlm.nih.gov/pubmed/19182260
64ncbi.nlm.nih.gov/pubmed/19060278
65, 348ncbi.nlm.nih.gov/pubmed/18488471
66ncbi.nlm.nih.gov/pubmed/18842800
67, 144ncbi.nlm.nih.gov/pubmed/19157552
68ncbi.nlm.nih.gov/pubmed/15249366
69ncbi.nlm.nih.gov/pubmed/27295359
70sci-hub.hk/10.1080/19490976.2018.1435247
71ncbi.nlm.nih.gov/pubmed/25683020
72ncbi.nlm.nih.gov/pubmed/26743754
73ncbi.nlm.nih.gov/pubmed/27355186
74, 75ncbi.nlm.nih.gov/pmc/articles/PMC1771658/
76ncbi.nlm.nih.gov/pubmed/27163238
77ncbi.nlm.nih.gov/pubmed/27077127
78sciencedirect.com/science/article/pii/S0014483515000044?via%3Dihub
79, 80, 81, 82, 379sci-hub.hk/10.3109/08820538.2011.588666
83, 1014ncbi.nlm.nih.gov/pmc/articles/PMC3652603/
84ncbi.nlm.nih.gov/pmc/articles/PMC2952187/
85ncbi.nlm.nih.gov/pubmed/26966867
86ncbi.nlm.nih.gov/pubmed/21212706
87ncbi.nlm.nih.gov/pmc/articles/PMC3419481/
89, 367ncbi.nlm.nih.gov/pmc/articles/PMC2919496/
90ncbi.nlm.nih.gov/pmc/articles/PMC3017315/
91ncbi.nlm.nih.gov/pubmed/21144031
92ncbi.nlm.nih.gov/pubmed/19547718
93ncbi.nlm.nih.gov/pubmed/27788256
94, 129, 404, 1066ncbi.nlm.nih.gov/pmc/articles/PMC4122127/
95ncbi.nlm.nih.gov/pubmed/27009107
96, 220, 330, 336, 402, 403ncbi.nlm.nih.gov/pmc/articles/PMC4152952/
97ncbi.nlm.nih.gov/pubmed/27716857
98ncbi.nlm.nih.gov/pubmed/15946260
100ncbi.nlm.nih.gov/pubmed/23337937
101ncbi.nlm.nih.gov/pubmed/28184904
102ncbi.nlm.nih.gov/pubmed/21724914
103ncbi.nlm.nih.gov/pubmed/25186463
104ncbi.nlm.nih.gov/pubmed/27162728
105, 657ncbi.nlm.nih.gov/pubmed/25191529
106, 758ncbi.nlm.nih.gov/pubmed/25576666
107ncbi.nlm.nih.gov/pubmed/25184331
108ncbi.nlm.nih.gov/pubmed/27137488
109ncbi.nlm.nih.gov/pubmed/15909160
110ncbi.nlm.nih.gov/pubmed/23590149
111ncbi.nlm.nih.gov/pubmed/21241801/
112ncbi.nlm.nih.gov/pubmed/11424194/
113ncbi.nlm.nih.gov/pubmed/15762998/
114ncbi.nlm.nih.gov/pubmed/15347683/
115ncbi.nlm.nih.gov/pubmed/17255335/
116ncbi.nlm.nih.gov/pubmed/17644432/
117ncbi.nlm.nih.gov/pubmed/8225863/
118ncbi.nlm.nih.gov/pubmed/26936827
119ncbi.nlm.nih.gov/pmc/articles/PMC4627205/
121ncbi.nlm.nih.gov/pubmed/18040235
122ncbi.nlm.nih.gov/pubmed/12912686
123, 130, 474ncbi.nlm.nih.gov/pmc/articles/PMC4091411/
124Seddon et al. (2010)
125ncbi.nlm.nih.gov/pmc/articles/PMC4876307/
126ncbi.nlm.nih.gov/pubmed/23562078/
127ncbi.nlm.nih.gov/pubmed/21447678/
128ncbi.nlm.nih.gov/pubmed/25704819
131ncbi.nlm.nih.gov/pubmed/17525280
132ncbi.nlm.nih.gov/pubmed/26931413
133ncbi.nlm.nih.gov/pubmed/17563727
135ncbi.nlm.nih.gov/pubmed/22067370
136ncbi.nlm.nih.gov/pubmed/12724698
137ncbi.nlm.nih.gov/pubmed/12005165
138ncbi.nlm.nih.gov/pubmed/11734513
139ncbi.nlm.nih.gov/pubmed/11324986
140, 475ncbi.nlm.nih.gov/pubmed/22783741
141ncbi.nlm.nih.gov/pubmed/1905796
143ncbi.nlm.nih.gov/pubmed/28661040
146ncbi.nlm.nih.gov/pubmed/8604533
147, 354ncbi.nlm.nih.gov/pubmed/19516002
148ncbi.nlm.nih.gov/pubmed/19784391
149ncbi.nlm.nih.gov/pubmed/18992957/
150ncbi.nlm.nih.gov/pubmed/1508519
151ncbi.nlm.nih.gov/pmc/articles/PMC4022009/
152ncbi.nlm.nih.gov/pubmed/28628761
153ncbi.nlm.nih.gov/pubmed/28689265
154ncbi.nlm.nih.gov/pubmed/25325855/
155ncbi.nlm.nih.gov/pmc/articles/PMC4992630/#R266
156ncbi.nlm.nih.gov/pubmed/24012762
157ncbi.nlm.nih.gov/pmc/articles/PMC5554853/
158ncbi.nlm.nih.gov/pubmed/28993186
159ncbi.nlm.nih.gov/pubmed/26275132
160ncbi.nlm.nih.gov/pubmed/26717306
161ncbi.nlm.nih.gov/pmc/articles/PMC4362880/
162ncbi.nlm.nih.gov/pubmed/17825288
163ncbi.nlm.nih.gov/pubmed/20393111
164, 171, 809ncbi.nlm.nih.gov/pmc/articles/PMC3864379/
165ncbi.nlm.nih.gov/pubmed/24235017
166ncbi.nlm.nih.gov/pubmed/23759439
167ncbi.nlm.nih.gov/pubmed/20238014
168ncbi.nlm.nih.gov/pubmed/20567027
169ncbi.nlm.nih.gov/pubmed/21071746
170ncbi.nlm.nih.gov/pubmed/27659908
172ncbi.nlm.nih.gov/pubmed/22903875
173ncbi.nlm.nih.gov/pubmed/25205869
174ncbi.nlm.nih.gov/pubmed/23341015
175ncbi.nlm.nih.gov/pubmed/25277027
176ncbi.nlm.nih.gov/pubmed/25456519
177ncbi.nlm.nih.gov/pubmed/26489120
178ncbi.nlm.nih.gov/pubmed/23761385
179ncbi.nlm.nih.gov/pubmed/18978936
180ncbi.nlm.nih.gov/pubmed/27716750
181sci-hub.hk/10.1586/1744666X.2014.950231
182ncbi.nlm.nih.gov/pubmed/29196768
183ncbi.nlm.nih.gov/pubmed/16361667
184ncbi.nlm.nih.gov/pubmed/26062001
186ncbi.nlm.nih.gov/pubmed/19996827/
187ncbi.nlm.nih.gov/pubmed/22737386/
188ncbi.nlm.nih.gov/pubmed/23732984
189ncbi.nlm.nih.gov/pubmed/26830368
191, 1077ncbi.nlm.nih.gov/pubmed/18326752
192, 765ncbi.nlm.nih.gov/pmc/articles/PMC5757825/
193ncbi.nlm.nih.gov/pubmed/17656467
194sci-hub.hk/10.1016/j.exer.2013.07.017
195ncbi.nlm.nih.gov/pmc/articles/PMC4457466/
196ncbi.nlm.nih.gov/pubmed/27998274
197ncbi.nlm.nih.gov/pubmed/27733811
198ncbi.nlm.nih.gov/pubmed/28029445
199sci-hub.hk/10.1159/000438953
200ncbi.nlm.nih.gov/pmc/articles/PMC5563895/
201ncbi.nlm.nih.gov/pmc/articles/PMC3669899/
202ncbi.nlm.nih.gov/pmc/articles/PMC5158158/
206ncbi.nlm.nih.gov/pubmed/18997061
207, 567ncbi.nlm.nih.gov/pubmed/25402962
208ncbi.nlm.nih.gov/pubmed/12208347
209ncbi.nlm.nih.gov/pubmed/20836858
210ncbi.nlm.nih.gov/pubmed/22503691
211ncbi.nlm.nih.gov/pubmed/28461502
212, 236ncbi.nlm.nih.gov/pubmed/25268952
213ncbi.nlm.nih.gov/pubmed/16386082
214ncbi.nlm.nih.gov/pubmed/25228547
215ncbi.nlm.nih.gov/pubmed/21641389
216ncbi.nlm.nih.gov/pubmed/28823871
217ncbi.nlm.nih.gov/pubmed/25447561
218ncbi.nlm.nih.gov/pubmed/28228282
219ncbi.nlm.nih.gov/pubmed/25542520
221ncbi.nlm.nih.gov/pubmed/16452172/
222ncbi.nlm.nih.gov/pubmed/22698681
223ncbi.nlm.nih.gov/pmc/articles/PMC4250317/
224ncbi.nlm.nih.gov/pubmed/25257511
225ncbi.nlm.nih.gov/pubmed/26847702/
226ncbi.nlm.nih.gov/pubmed/26260587
227ncbi.nlm.nih.gov/pubmed/25385658
228ncbi.nlm.nih.gov/pubmed/26940175
229ncbi.nlm.nih.gov/pubmed/18566438
230ncbi.nlm.nih.gov/pubmed/17219109
231, 960ncbi.nlm.nih.gov/pubmed/20021380/
232, 961ncbi.nlm.nih.gov/pubmed/17551926/
233, 962ncbi.nlm.nih.gov/pubmed/18442088/
234ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR114
235ncbi.nlm.nih.gov/pubmed/24269406
237ncbi.nlm.nih.gov/pubmed/21265246
238ncbi.nlm.nih.gov/pubmed/21242702
239ncbi.nlm.nih.gov/pubmed/20532522
240ncbi.nlm.nih.gov/pubmed/25744331
241, 357ncbi.nlm.nih.gov/pubmed/26080579
242ncbi.nlm.nih.gov/pubmed/25363549
243ncbi.nlm.nih.gov/pubmed/24314839
244ncbi.nlm.nih.gov/pubmed/24479739
245ncbi.nlm.nih.gov/pubmed/24739782/
246ncbi.nlm.nih.gov/pmc/articles/PMC5755337
247ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR44
248ncbi.nlm.nih.gov/pubmed/25308346
251ncbi.nlm.nih.gov/pubmed/26154559
252, 413ncbi.nlm.nih.gov/pubmed/26049047
253ncbi.nlm.nih.gov/pubmed/20957206
254ncbi.nlm.nih.gov/pubmed/24334449
255ncbi.nlm.nih.gov/pubmed/18216312
256sci-hub.tv/10.1038/ki.2013.491
257ncbi.nlm.nih.gov/pubmed/19437313
259 ncbi.nlm.nih.gov/pubmed/27327294
260ncbi.nlm.nih.gov/pmc/articles/PMC3842398/
261ncbi.nlm.nih.gov/pmc/articles/PMC5535015/
262ncbi.nlm.nih.gov/pubmed/25207946
263ncbi.nlm.nih.gov/pubmed/25905984
264ncbi.nlm.nih.gov/pubmed/25905784
265, 872ncbi.nlm.nih.gov/pubmed/24178404
266ncbi.nlm.nih.gov/pubmed/28603410
267, 1109ncbi.nlm.nih.gov/pubmed/28829845
268ncbi.nlm.nih.gov/pubmed/23221073
269ncbi.nlm.nih.gov/pubmed/23557734
270ncbi.nlm.nih.gov/pubmed/25137915
271ncbi.nlm.nih.gov/pubmed/26431165
272ncbi.nlm.nih.gov/pubmed/21703414
273ncbi.nlm.nih.gov/pubmed/28806013
274ncbi.nlm.nih.gov/pmc/articles/PMC5224557/
275ncbi.nlm.nih.gov/pubmed/20515810
276, 371, 373sci-hub.hk/10.1111/j.1755-3768.2009.01840.x
277ncbi.nlm.nih.gov/pubmed/22564527
278pbkom.eu/pl/content/tioredoksyna-i-reduktaza-tioredoksyny-w-patogenezie-wybranych-chorób-człowieka-część-ii
279ncbi.nlm.nih.gov/pubmed/21898270
280ncbi.nlm.nih.gov/pubmed/21909359
281ncbi.nlm.nih.gov/pmc/articles/PMC3664466/
282ncbi.nlm.nih.gov/pmc/articles/PMC4696750/
283ncbi.nlm.nih.gov/pmc/articles/PMC4976396/
284ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR99
285ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR100
286ncbi.nlm.nih.gov/pubmed/29329580
287ncbi.nlm.nih.gov/pubmed/26884800
288ncbi.nlm.nih.gov/pubmed/28367269
289ncbi.nlm.nih.gov/pmc/articles/PMC3154861/
290sci-hub.hk/10.1136/bjophthalmol-2014-305339
291ncbi.nlm.nih.gov/pubmed/23525277
292ncbi.nlm.nih.gov/pubmed/24709310
293ncbi.nlm.nih.gov/pubmed/28663750
294, 760ncbi.nlm.nih.gov/pubmed/25978536
295Oxidation of iron is accomplished by the ferroxidases such as, ceruloplasmin (Osaki et al., 1966), hephaestin (Heph) (Vulpe et al., 1999), amyloid precursor protein (APP) (Duce et al., 2010) or zyklopen (Chen et al., 2010).
296, 1087, 1115ncbi.nlm.nih.gov/pmc/articles/PMC3695389/
297ncbi.nlm.nih.gov/pubmed/23833031
298, 706ncbi.nlm.nih.gov/pubmed/24147793
299ncbi.nlm.nih.gov/pmc/articles/PMC4082166/
300ncbi.nlm.nih.gov/pmc/articles/PMC3695389/#B39
301ncbi.nlm.nih.gov/pubmed/26252225
302ncbi.nlm.nih.gov/pubmed/27663850
303ncbi.nlm.nih.gov/pubmed/19733830
304ncbi.nlm.nih.gov/pubmed/16473343
305ncbi.nlm.nih.gov/pubmed/25388812
306ncbi.nlm.nih.gov/pubmed/25125608
307, 828ncbi.nlm.nih.gov/pubmed/17967453
308ncbi.nlm.nih.gov/pubmed/17631267
309, 310ncbi.nlm.nih.gov/pubmed/19254715
311, 741ncbi.nlm.nih.gov/pubmed/24440594
312Woodside JV, Young IS, Gilchrist SE, Vioque J, Chakravarthy U, de Jong PT, et al. Factors associated with serum/plasma concentrations of vitamins A, C, E and carotenoids in older people throughout Europe: the EUREYE study. Eur J Nutr 2013;52:1493–501.
313Snodderly DM. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 1995;62:1448S–61S.
314ncbi.nlm.nih.gov/pubmed/29186981
315ncbi.nlm.nih.gov/pubmed/28292774
316ncbi.nlm.nih.gov/pubmed/15834082
317ncbi.nlm.nih.gov/pubmed/16386980
318ncbi.nlm.nih.gov/pubmed/18242575
319ncbi.nlm.nih.gov/pubmed/24711457
320ncbi.nlm.nih.gov/pubmed/22300034
321ncbi.nlm.nih.gov/pubmed/18769672
322ncbi.nlm.nih.gov/pubmed/21330654
323ncbi.nlm.nih.gov/pubmed/14691189
324ncbi.nlm.nih.gov/pubmed/22796717
325ncbi.nlm.nih.gov/pubmed/18597988
326ncbi.nlm.nih.gov/pubmed/9586798
327, 1132, 1135sci-hub.hk/10.3109/02713683.2014.925933
328, 372, 1011ncbi.nlm.nih.gov/pmc/articles/PMC4983667/
329ncbi.nlm.nih.gov/pmc/articles/PMC4838228/
331ncbi.nlm.nih.gov/pubmed/26427479
332ncbi.nlm.nih.gov/pubmed/19119326/
333ncbi.nlm.nih.gov/pubmed/12432544/
334ncbi.nlm.nih.gov/pubmed/16317135/
335(Fliesler, 2010b; Fliesler and Bretillon, 2010 (Xu et al., 2011; Xu et al., 2012
337ncbi.nlm.nih.gov/pubmed/25276841/
338ncbi.nlm.nih.gov/pubmed/23608111/
339ncbi.nlm.nih.gov/pubmed/21357400/
340ncbi.nlm.nih.gov/pubmed/24036949/
341, 548ncbi.nlm.nih.gov/pubmed/25034031/
342ncbi.nlm.nih.gov/pubmed/21571681/
343ncbi.nlm.nih.gov/pubmed/24705166/
344ncbi.nlm.nih.gov/pubmed/22819137/
345ncbi.nlm.nih.gov/pmc/articles/PMC4385698/
346ncbi.nlm.nih.gov/pubmed/20951826/
347ncbi.nlm.nih.gov/pubmed/25237159
349 ncbi.nlm.nih.gov/pubmed/22072713
350ncbi.nlm.nih.gov/pubmed/21789374
351ncbi.nlm.nih.gov/pubmed/21669404
352ncbi.nlm.nih.gov/pubmed/22822904
353ncbi.nlm.nih.gov/pubmed/19836390
355ncbi.nlm.nih.gov/pubmed/18827739
356ncbi.nlm.nih.gov/pubmed/24363822
358ncbi.nlm.nih.gov/pubmed/26148801
359ncbi.nlm.nih.gov/pubmed/25163348
360, 549, 1039ncbi.nlm.nih.gov/pubmed/22067048/
361ncbi.nlm.nih.gov/pubmed/26026877
362ncbi.nlm.nih.gov/pubmed/19673453
363, 1008sci-hub.tv/10.1016/j.arr.2009.06.002
364ncbi.nlm.nih.gov/pubmed/19277984
365ncbi.nlm.nih.gov/pmc/articles/PMC2682031/
366ncbi.nlm.nih.gov/pubmed/21031020
368(Afshari et al.2010)
369ncbi.nlm.nih.gov/pmc/articles/PMC5660115/
370ncbi.nlm.nih.gov/pubmed/23029250
374, 473, 787ncbi.nlm.nih.gov/pmc/articles/PMC3939747/
375ncbi.nlm.nih.gov/pubmed/18997094
376ncbi.nlm.nih.gov/pubmed/26074074
377ncbi.nlm.nih.gov/pubmed/21447688
378ncbi.nlm.nih.gov/pubmed/21762495
380ncbi.nlm.nih.gov/pubmed/22003108
381ncbi.nlm.nih.gov/pubmed/25593029
382, 443ncbi.nlm.nih.gov/pubmed/25261634
383ncbi.nlm.nih.gov/pubmed/23409131
384ncbi.nlm.nih.gov/pubmed/25503251
385ncbi.nlm.nih.gov/pubmed/25118260
386ncbi.nlm.nih.gov/pubmed/25077601
387ncbi.nlm.nih.gov/pubmed/28128795
388ncbi.nlm.nih.gov/pubmed/7803358
389ncbi.nlm.nih.gov/pubmed/15728562
390ncbi.nlm.nih.gov/pubmed/29164232
391ncbi.nlm.nih.gov/pubmed/26827241
392ncbi.nlm.nih.gov/pubmed/23454586
393ncbi.nlm.nih.gov/pubmed/26618046
394ncbi.nlm.nih.gov/pubmed/28777387
395sci-hub.hk/10.1111/j.1444-0938.2012.00741.x
396ncbi.nlm.nih.gov/pubmed/27537264
397ncbi.nlm.nih.gov/pubmed/27984169
398ncbi.nlm.nih.gov/pubmed/28039766
399ncbi.nlm.nih.gov/pubmed/28624323
400sci-hub.hk/10.1016/j.ejpn.2015.07.001
401ncbi.nlm.nih.gov/pubmed/28585581
405ncbi.nlm.nih.gov/pubmed/24705166
406, 519, 978ncbi.nlm.nih.gov/pmc/articles/PMC4058366/
407ncbi.nlm.nih.gov/pubmed/28197357
408ncbi.nlm.nih.gov/pubmed/26560903
409ncbi.nlm.nih.gov/pubmed/27748300
410sci-hub.hk/10.1097/IIO.0b013e3180377936
411ncbi.nlm.nih.gov/pubmed/21673720/
412ncbi.nlm.nih.gov/pubmed/27693409
414ncbi.nlm.nih.gov/pubmed/19965817/
415ncbi.nlm.nih.gov/pubmed/21884302/
416ncbi.nlm.nih.gov/pubmed/22175541/
417ncbi.nlm.nih.gov/pmc/articles/PMC4153378/
418ncbi.nlm.nih.gov/pubmed/28605809
419ncbi.nlm.nih.gov/pubmed/21209887
420ncbi.nlm.nih.gov/pmc/articles/PMC5240106
421ncbi.nlm.nih.gov/pmc/articles/PMC5167134/
422sci-hub.hk/10.1152/physiol.00021.2005
423ncbi.nlm.nih.gov/pubmed/23878142/
424ncbi.nlm.nih.gov/pubmed/23817414/
425ncbi.nlm.nih.gov/pubmed/23613465/
426ncbi.nlm.nih.gov/pubmed/23462752/
427ncbi.nlm.nih.gov/pubmed/23221073/
428ncbi.nlm.nih.gov/pubmed/23840644/
429ncbi.nlm.nih.gov/pubmed/12483320/
430, 974sci-hub.hk/10.1007/s00018-016-2295-x
431Provias J, Jeynes B (2014) The role of the blood–brain barrier in the pathogenesis of senile plaques in Alzheimer’s disease. Int J Alzheimers Dis 2014:191863
432ncbi.nlm.nih.gov/pmc/articles/PMC4738726/
433ncbi.nlm.nih.gov/pubmed/25775051
434ncbi.nlm.nih.gov/pubmed/6714331/
435ncbi.nlm.nih.gov/pubmed/19151392/
436ncbi.nlm.nih.gov/pubmed/28345626
437, 1102ncbi.nlm.nih.gov/pubmed/19936204
438ncbi.nlm.nih.gov/pubmed/17304258
439, 1063ncbi.nlm.nih.gov/pubmed/16639025
440ncbi.nlm.nih.gov/pubmed/26878446
441, 1155ncbi.nlm.nih.gov/pubmed/26786476
442ncbi.nlm.nih.gov/pubmed/25319011
444ncbi.nlm.nih.gov/pubmed/25210424
446ncbi.nlm.nih.gov/pubmed/25815109
447ncbi.nlm.nih.gov/pmc/articles/PMC3973437/
448ncbi.nlm.nih.gov/pubmed/21336004
449ncbi.nlm.nih.gov/pubmed/25298412
450ncbi.nlm.nih.gov/pubmed/22172228
451ncbi.nlm.nih.gov/pubmed/24106111
452ncbi.nlm.nih.gov/pubmed/27170482
454ncbi.nlm.nih.gov/pubmed/26558215
455ncbi.nlm.nih.gov/pubmed/20937997
456ncbi.nlm.nih.gov/pubmed/18050118
457ncbi.nlm.nih.gov/pubmed/15803172
458ncbi.nlm.nih.gov/pubmed/24654791
459ncbi.nlm.nih.gov/pubmed/20220052
460ncbi.nlm.nih.gov/pubmed/28492872
461ncbi.nlm.nih.gov/pmc/articles/PMC5755337/#CR35
462, 463ncbi.nlm.nih.gov/pmc/articles/PMC4694044/
464ncbi.nlm.nih.gov/pubmed/24634660/
465ncbi.nlm.nih.gov/pubmed/23145206/
466ncbi.nlm.nih.gov/pubmed/25802332
467ncbi.nlm.nih.gov/pubmed/29351407
468, 471, 489phmd.pl/api/files/view/2031.pdf
469sci-hub.hk/10.1016/j.trsl.2014.04.005
470ncbi.nlm.nih.gov/pubmed/26697494
472ncbi.nlm.nih.gov/pubmed/23346798
476ncbi.nlm.nih.gov/pubmed/23713187
477ncbi.nlm.nih.gov/pubmhued/23623979
478ncbi.nlm.nih.gov/pubmed/24498989
479, 514ncbi.nlm.nih.gov/pubmed/26261643
480ncbi.nlm.nih.gov/pubmed/25811666
481ncbi.nlm.nih.gov/pubmed/24079541
482, 528ncbi.nlm.nih.gov/pubmed/29392637
483ncbi.nlm.nih.gov/pubmed/23714858
484, 877ncbi.nlm.nih.gov/pubmed/23738034
485ncbi.nlm.nih.gov/pubmed/25921964
486ncbi.nlm.nih.gov/pubmed/25915522
487ncbi.nlm.nih.gov/pubmed/28918250
488, 552ncbi.nlm.nih.gov/pubmed/28889998
490ncbi.nlm.nih.gov/pubmed/25277308
491ncbi.nlm.nih.gov/pubmed/24392338
492ncbi.nlm.nih.gov/pubmed/24440287
493ncbi.nlm.nih.gov/pubmed/24498017
494ncbi.nlm.nih.gov/pubmed/26914796
495ncbi.nlm.nih.gov/pubmed/28128407
496ncbi.nlm.nih.gov/pubmed/22440158
497ncbi.nlm.nih.gov/pubmed/23233260
498(Bjorkhem et al., 1995; Cruysberg et al., 1995; Dotti et al., 2001; Morgan et al., 1989)
499ncbi.nlm.nih.gov/pmc/articles/PMC5661646/
500sci-hub.hk/10.1016/j.jchf.2016.02.016
501ncbi.nlm.nih.gov/pubmed/17898294
502ncbi.nlm.nih.gov/pubmed/25878489
503ncbi.nlm.nih.gov/pubmed/25857228
504ncbi.nlm.nih.gov/pmc/articles/PMC4022009/#B34
505ncbi.nlm.nih.gov/pubmed/25028103
506ncbi.nlm.nih.gov/pmc/articles/PMC3525248/
507ncbi.nlm.nih.gov/pmc/articles/PMC5068469/
508ncbi.nlm.nih.gov/pmc/articles/PMC4082603/
509ncbi.nlm.nih.gov/pubmed/22820291/
510, 551ncbi.nlm.nih.gov/pubmed/27935234
511ncbi.nlm.nih.gov/pubmed/26727378
512ncbi.nlm.nih.gov/pubmed/27428740
513ncbi.nlm.nih.gov/pubmed/28635422
515, 556ncbi.nlm.nih.gov/pubmed/26301885
516ncbi.nlm.nih.gov/pubmed/26398587
517ncbi.nlm.nih.gov/pubmed/18461138
518, 524ncbi.nlm.nih.gov/pubmed/9717719/
520ncbi.nlm.nih.gov/pubmed/17453958/
521, 523ncbi.nlm.nih.gov/pubmed/18241055/
522ncbi.nlm.nih.gov/pubmed/12686551/
525ncbi.nlm.nih.gov/pmc/articles/PMC2906603/
526ncbi.nlm.nih.gov/pmc/articles/PMC2806007/
527ncbi.nlm.nih.gov/pubmed/20042177
529ncbi.nlm.nih.gov/pubmed/27404493
530ncbi.nlm.nih.gov/pubmed/19168221
531, 542ncbi.nlm.nih.gov/pubmed/25883802
532ncbi.nlm.nih.gov/pubmed/26949655
533ncbi.nlm.nih.gov/pubmed/27213791
534ncbi.nlm.nih.gov/pubmed/28846052
535ncbi.nlm.nih.gov/pubmed/26608582
536ncbi.nlm.nih.gov/pubmed/26464724
537ncbi.nlm.nih.gov/pubmed/22331484
538ncbi.nlm.nih.gov/pubmed/28465655
539ncbi.nlm.nih.gov/pubmed/24689893
540ncbi.nlm.nih.gov/pubmed/23868022
541, 555ncbi.nlm.nih.gov/pubmed/25010633
543ncbi.nlm.nih.gov/pubmed/23089144
544ncbi.nlm.nih.gov/pubmed/22762059
545ncbi.nlm.nih.gov/pubmed/27778189
546ncbi.nlm.nih.gov/pubmed/26656366
547ncbi.nlm.nih.gov/pubmed/26989749
550ncbi.nlm.nih.gov/pubmed/25788651
553ncbi.nlm.nih.gov/pubmed/28944191
554ncbi.nlm.nih.gov/pubmed/27125063
557academic.oup.com/ajcn/article/98/1/4/4578338
558ncbi.nlm.nih.gov/pubmed/18320515
559ncbi.nlm.nih.gov/pubmed/28546923
560ncbi.nlm.nih.gov/pubmed/28221439
561ncbi.nlm.nih.gov/pubmed/23636242
562ncbi.nlm.nih.gov/pubmed/26194346
563ncbi.nlm.nih.gov/pubmed/26885895
564ncbi.nlm.nih.gov/pmc/articles/PMC3876436/
565ncbi.nlm.nih.gov/pubmed/28931831
566ncbi.nlm.nih.gov/pubmed/28116245
568ncbi.nlm.nih.gov/pubmed/20958190
569ncbi.nlm.nih.gov/pubmed/28769003
570ncbi.nlm.nih.gov/pubmed/22553528
571, 636ncbi.nlm.nih.gov/pubmed/25955241
572ncbi.nlm.nih.gov/pubmed/20879805
573sci-hub.hk/10.1089/jop.2014.0074
574ncbi.nlm.nih.gov/pubmed/28260013
575, 578ncbi.nlm.nih.gov/pubmed/24502359
576ncbi.nlm.nih.gov/pubmed/25432585
577ncbi.nlm.nih.gov/pubmed/28415701
579ncbi.nlm.nih.gov/pubmed/20653475
580, 641ncbi.nlm.nih.gov/pubmed/26044821
581ncbi.nlm.nih.gov/pubmed/27467382
582ncbi.nlm.nih.gov/pubmed/26914244
583, 585ncbi.nlm.nih.gov/pubmed/19433719
584ncbi.nlm.nih.gov/pubmed/20938484
586, 669ncbi.nlm.nih.gov/pubmed/16075680
587ncbi.nlm.nih.gov/pubmed/16530757
588ncbi.nlm.nih.gov/pubmed/14704513
589Beatty et al. 2000; Sies et al. 1992; Fig. 1
590ncbi.nlm.nih.gov/pubmed/29393642
591ncbi.nlm.nih.gov/pmc/articles/PMC4749535/
592sci-hub.hk/10.1080/10408398.2013.879467
593ncbi.nlm.nih.gov/pubmed/23938314
594ncbi.nlm.nih.gov/pubmed/28289690
595ncbi.nlm.nih.gov/pubmed/22852021
596, 605, 734ncbi.nlm.nih.gov/pmc/articles/PMC3703386/
597ncbi.nlm.nih.gov/pubmed/24187606
598ncbi.nlm.nih.gov/pubmed/29376497
599, 619ncbi.nlm.nih.gov/pubmed/24527228
600, 862ncbi.nlm.nih.gov/pubmed/16631350
601ncbi.nlm.nih.gov/pubmed/28570634
602ncbi.nlm.nih.gov/pubmed/24152963
603ncbi.nlm.nih.gov/pubmed/23901249
604sci-hub.hk/10.1016/S0167-7799(03)00078-7
606, 631ncbi.nlm.nih.gov/pubmed/19589397
607, 630ncbi.nlm.nih.gov/pubmed/19237716
608ncbi.nlm.nih.gov/pubmed/20153624
609ncbi.nlm.nih.gov/pubmed/25365937
610ncbi.nlm.nih.gov/pubmed/22553507
611ncbi.nlm.nih.gov/pubmed/24486344
612ncbi.nlm.nih.gov/pubmed/21425492
613, 624ncbi.nlm.nih.gov/pubmed/21683142
614ncbi.nlm.nih.gov/pubmed/21961034
615ncbi.nlm.nih.gov/pubmed/20565307
616ncbi.nlm.nih.gov/pubmed/26475979
617ncbi.nlm.nih.gov/pubmed/20702817
618ncbi.nlm.nih.gov/pubmed/23036575
620ncbi.nlm.nih.gov/pubmed/7540359
621 ncbi.nlm.nih.gov/pubmed/19410952
622ncbi.nlm.nih.gov/pubmed/17921404
623ncbi.nlm.nih.gov/pubmed/19470386
625ncbi.nlm.nih.gov/pubmed/22678104
626ncbi.nlm.nih.gov/pubmed/25146987
627ncbi.nlm.nih.gov/pubmed/23335848
628ncbi.nlm.nih.gov/pubmed/17197552
629ncbi.nlm.nih.gov/pubmed/27937080
632ncbi.nlm.nih.gov/pubmed/20532143
633ncbi.nlm.nih.gov/pubmed/28409157
634ncbi.nlm.nih.gov/pubmed/28447781
635ncbi.nlm.nih.gov/pubmed/19916788
637ncbi.nlm.nih.gov/pubmed/28459020
638ncbi.nlm.nih.gov/pubmed/23081978
639ncbi.nlm.nih.gov/pubmed/28031693
640ncbi.nlm.nih.gov/pubmed/17157799
642ncbi.nlm.nih.gov/pubmed/29247196
643ncbi.nlm.nih.gov/pubmed/25610013
644ncbi.nlm.nih.gov/pubmed/26619957
645ncbi.nlm.nih.gov/pubmed/26961928
646ncbi.nlm.nih.gov/pubmed/16877271
647ncbi.nlm.nih.gov/pmc/articles/PMC4259824/
648ncbi.nlm.nih.gov/pubmed/25385631
649ncbi.nlm.nih.gov/pubmed/26941573
650ncbi.nlm.nih.gov/pubmed/29357794
651ncbi.nlm.nih.gov/pubmed/24392323
652ncbi.nlm.nih.gov/pubmed/19487926
653ncbi.nlm.nih.gov/pubmed/19060288
654ncbi.nlm.nih.gov/pubmed/28762311
655ncbi.nlm.nih.gov/pmc/articles/PMC5755337/
656ncbi.nlm.nih.gov/pubmed/11125270
658ncbi.nlm.nih.gov/pubmed/22903875
659ncbi.nlm.nih.gov/pubmed/22879419
660ncbi.nlm.nih.gov/pubmed/29081889
661hindawi.com/journals/ecam/2013/247948/
662ncbi.nlm.nih.gov/pubmed/19216858
663ncbi.nlm.nih.gov/pmc/articles/PMC4771984/
664, 730ncbi.nlm.nih.gov/pubmed/26035340
665ncbi.nlm.nih.gov/pubmed/26643168
666ncbi.nlm.nih.gov/pubmed/26589689
667ncbi.nlm.nih.gov/pubmed/27660013
668ncbi.nlm.nih.gov/pubmed/25709900
670, 672sci-hub.hk/10.1055/s-0033-1351074
671sci-hub.hk/10.1002/mnfr.201200718
673ncbi.nlm.nih.gov/pubmed/28853916
674ncbi.nlm.nih.gov/pubmed/26445530
675ncbi.nlm.nih.gov/pubmed/22742420
676ncbi.nlm.nih.gov/pubmed/19121385
677ncbi.nlm.nih.gov/pubmed/17662242/
678, 679ncbi.nlm.nih.gov/pubmed/28155996
680(Jeong, Koh, Lee, Lee, Lee, Bae, Lu and Kim 2011)
681ncbi.nlm.nih.gov/pubmed/25929449
682ncbi.nlm.nih.gov/pubmed/28371616
683ncbi.nlm.nih.gov/pubmed/25113565
684ncbi.nlm.nih.gov/pubmed/25132985
685ncbi.nlm.nih.gov/pubmed/24160731
686ncbi.nlm.nih.gov/pubmed/28132833
687ncbi.nlm.nih.gov/pubmed/27155396
688ncbi.nlm.nih.gov/pubmed/27240523
689ncbi.nlm.nih.gov/pubmed/26653970
690ncbi.nlm.nih.gov/pubmed/22802947
691ncbi.nlm.nih.gov/pubmed/26781848
692, 714ncbi.nlm.nih.gov/pubmed/25662315
693ncbi.nlm.nih.gov/pubmed/28713895
694ncbi.nlm.nih.gov/pubmed/23900584
695ncbi.nlm.nih.gov/pubmed/23834167
696ncbi.nlm.nih.gov/pubmed/27372058
697ncbi.nlm.nih.gov/pubmed/25483086
698ncbi.nlm.nih.gov/pubmed/26026469
699ncbi.nlm.nih.gov/pubmed/27435599
700ncbi.nlm.nih.gov/pubmed/28461203
701ncbi.nlm.nih.gov/pubmed/10807109
702ncbi.nlm.nih.gov/pubmed/12244891
703ncbi.nlm.nih.gov/pubmed/23440785
704ncbi.nlm.nih.gov/pubmed/23790153
705ncbi.nlm.nih.gov/pubmed/16400219
707archive.foundationalmedicinereview.com/publications/3/2/128.pdf
708ncbi.nlm.nih.gov/pubmed/29036897
709ncbi.nlm.nih.gov/pubmed/9577248
710ncbi.nlm.nih.gov/pubmed/26888416
711ncbi.nlm.nih.gov/pubmed/26694358
712ncbi.nlm.nih.gov/pubmed/26694327
713ncbi.nlm.nih.gov/pubmed/26467741
715ncbi.nlm.nih.gov/pubmed/25041941
716, 721sciencedirect.com/science/article/pii/S0531556513001009?via%3Dihub
717sci-hub.hk/10.1016/j.exger.2013.04.002
718Dogru et al., 2007;
719]Kawashima et al., 2012
720ncbi.nlm.nih.gov/pubmed/17071598/
722ncbi.nlm.nih.gov/pubmed/28336272
723ncbi.nlm.nih.gov/pubmed/15767067
724ncbi.nlm.nih.gov/pubmed/15229324
725ncbi.nlm.nih.gov/pubmed/29234364
726ncbi.nlm.nih.gov/pubmed/22219646
727ncbi.nlm.nih.gov/pubmed/28765885
728sci-hub.hk/10.1002/dta.265
729ncbi.nlm.nih.gov/pubmed/25041941/
731sci-hub.hk/10.1016/j.bbrc.2007.08.100
732ncbi.nlm.nih.gov/pmc/articles/PMC3736538/
733ncbi.nlm.nih.gov/pubmed/27911769
735ncbi.nlm.nih.gov/pmc/articles/PMC1315147/?page=11
736ncbi.nlm.nih.gov/pubmed/28583762
737ncbi.nlm.nih.gov/pmc/articles/PMC4420790/
738ncbi.nlm.nih.gov/pmc/articles/PMC4734847/
739ncbi.nlm.nih.gov/pubmed/22169226
740ncbi.nlm.nih.gov/pubmed/28253482
742ncbi.nlm.nih.gov/pubmed/21559389
743ncbi.nlm.nih.gov/pubmed/28782506
744ncbi.nlm.nih.gov/pubmed/27923559
745, 808ncbi.nlm.nih.gov/pubmed/16723490/
746ncbi.nlm.nih.gov/pmc/articles/PMC3575185/
747ncbi.nlm.nih.gov/pubmed/27778132
748ncbi.nlm.nih.gov/pubmed/25123184
749ncbi.nlm.nih.gov/pubmed/23916613
750ncbi.nlm.nih.gov/pubmed/21909619
751ncbi.nlm.nih.gov/pubmed/21112485
752ncbi.nlm.nih.gov/pubmed/24559018
753ncbi.nlm.nih.gov/pubmed/19119326
754ncbi.nlm.nih.gov/pubmed/12189211
755ncbi.nlm.nih.gov/pubmed/25378587
756sci-hub.tv/10.1111/j.1755-3768.2010.01989.x
757ncbi.nlm.nih.gov/pmc/articles/PMC5129901/
759ncbi.nlm.nih.gov/pubmed/28761325
761ncbi.nlm.nih.gov/pubmed/27230578
762ncbi.nlm.nih.gov/pubmed/16565362
763ncbi.nlm.nih.gov/pubmed/17065470
764ncbi.nlm.nih.gov/pmc/articles/PMC4069254/
766ncbi.nlm.nih.gov/pubmed/27840374
767ncbi.nlm.nih.gov/pubmed/29115489
768ncbi.nlm.nih.gov/pubmed/27831657
769ncbi.nlm.nih.gov/pubmed/19710945
770ncbi.nlm.nih.gov/pubmed/10231733/
771ncbi.nlm.nih.gov/pubmed/14521634/
772ncbi.nlm.nih.gov/pubmed/10496149/
773ncbi.nlm.nih.gov/pubmed/12022289/
774ncbi.nlm.nih.gov/pubmed/12510712
775ncbi.nlm.nih.gov/pubmed/25110076
776ncbi.nlm.nih.gov/pubmed/24603419
777, 790ncbi.nlm.nih.gov/pubmed/16399908
778ncbi.nlm.nih.gov/pubmed/18940262
779ncbi.nlm.nih.gov/pubmed/16399908/
780ncbi.nlm.nih.gov/pubmed/21451205
781ncbi.nlm.nih.gov/pmc/articles/PMC5027321/
782onlinelibrary.wiley.com/doi/full/10.1111/jpi.12430
783ncbi.nlm.nih.gov/pmc/articles/PMC3462291/
784ncbi.nlm.nih.gov/pubmed/18494741
785ncbi.nlm.nih.gov/pubmed/19710945/
786ncbi.nlm.nih.gov/pubmed/15109913
788ncbi.nlm.nih.gov/pubmed/20884126
789ncbi.nlm.nih.gov/pubmed/22773902
791ncbi.nlm.nih.gov/pubmed/20944813
792sci-hub.hk/10.1111/j.1532-5415.2012.04015.x
793ncbi.nlm.nih.gov/pubmed/24946100
794ncbi.nlm.nih.gov/pubmed/28892825
795, 796ncbi.nlm.nih.gov/pubmed/26090872
797ncbi.nlm.nih.gov/pmc/articles/PMC5691736/
798, 802ncbi.nlm.nih.gov/pubmed/22217419
799ncbi.nlm.nih.gov/pubmed/25028353
800ncbi.nlm.nih.gov/pubmed/28547797
801ncbi.nlm.nih.gov/pubmed/21482873
803ncbi.nlm.nih.gov/pubmed/26312598
804ncbi.nlm.nih.gov/pubmed/27105707
805ncbi.nlm.nih.gov/pubmed/17502506
806ncbi.nlm.nih.gov/pubmed/25015360
807ncbi.nlm.nih.gov/pubmed/9875267
810ncbi.nlm.nih.gov/pubmed/25393287
811ncbi.nlm.nih.gov/pubmed/29348791
812ncbi.nlm.nih.gov/pubmed/29523386
813ncbi.nlm.nih.gov/pubmed/23825923
814ncbi.nlm.nih.gov/pubmed/29259394
815ncbi.nlm.nih.gov/pubmed/18948096
816ncbi.nlm.nih.gov/pubmed/20150599
817ncbi.nlm.nih.gov/pubmed/19710611
818, 823ncbi.nlm.nih.gov/pubmed/16723490
819ncbi.nlm.nih.gov/pubmed/10865057
820ncbi.nlm.nih.gov/pubmed/11157883
821(Tate et al. 1997; Sato and Bremner 1993)
822ncbi.nlm.nih.gov/pubmed/23661701
824ncbi.nlm.nih.gov/pubmed/21603979
825ncbi.nlm.nih.gov/pubmed/28003730
826ncbi.nlm.nih.gov/pubmed/18579132
827Girijashanker et al. 2008
829ncbi.nlm.nih.gov/pubmed/7935085
830Newsome et al. 1988
831sci-hub.hk/10.1039/c3mt00291h
832sci-hub.hk/10.1016/j.jtemb.2012.04.004
833, 881sci-hub.tv/10.1016/j.nutres.2013.10.011
834sci-hub.hk/10.1016/j.jtemb.2014.07.019
835 sci-hub.hk/10.1016/j.jtemb.2014.09.002
836ncbi.nlm.nih.gov/pubmed/25260885
837, 840ncbi.nlm.nih.gov/pubmed/26187344
839ncbi.nlm.nih.gov/pubmed/19520558
841ncbi.nlm.nih.gov/pmc/articles/PMC5539800/
842sci-hub.hk/10.1159/000085248
843ncbi.nlm.nih.gov/pubmed/26237736
844, 854ncbi.nlm.nih.gov/pubmed/21307302
845ncbi.nlm.nih.gov/pmc/articles/PMC4742947/
846, 847karger.com/Article/FullText/343708
848ncbi.nlm.nih.gov/pubmed/19227095
849ncbi.nlm.nih.gov/pubmed/19608872
850ncbi.nlm.nih.gov/pubmed/27125064
851ncbi.nlm.nih.gov/pubmed/19508997
852ncbi.nlm.nih.gov/pubmed/18689376
853ncbi.nlm.nih.gov/pubmed/19433717
855, 906ncbi.nlm.nih.gov/pubmed/24743813
856ncbi.nlm.nih.gov/pubmed/26042773
857, 858ncbi.nlm.nih.gov/pubmed/26132079
859ncbi.nlm.nih.gov/pubmed/21821023
860ncbi.nlm.nih.gov/pubmed/26950968
861, 871ncbi.nlm.nih.gov/pubmed/25228440
863ncbi.nlm.nih.gov/pubmed/21697302
864ncbi.nlm.nih.gov/pubmed/17846363
865ncbi.nlm.nih.gov/pubmed/28665123
866ncbi.nlm.nih.gov/pubmed/28656238
867ncbi.nlm.nih.gov/pubmed/19437483
868ncbi.nlm.nih.gov/pubmed/25815324
869ncbi.nlm.nih.gov/pubmed/20027805
870ncbi.nlm.nih.gov/pubmed/22465791
873ncbi.nlm.nih.gov/pubmed/23651647
875ncbi.nlm.nih.gov/pubmed/25748723
876ncbi.nlm.nih.gov/pubmed/21091228
878ncbi.nlm.nih.gov/pmc/articles/PMC3908680/
879ncbi.nlm.nih.gov/pubmed/25024317
880ncbi.nlm.nih.gov/pubmed/27335042
882ncbi.nlm.nih.gov/pubmed/25813074
883ncbi.nlm.nih.gov/pubmed/23677863
884ncbi.nlm.nih.gov/pubmed/26720458
885ncbi.nlm.nih.gov/pubmed/27444056
886ncbi.nlm.nih.gov/pubmed/28957818
887ncbi.nlm.nih.gov/pubmed/25160533
888ncbi.nlm.nih.gov/pubmed/24163760
889ncbi.nlm.nih.gov/pubmed/24103519
890ncbi.nlm.nih.gov/pubmed/27080067
891ncbi.nlm.nih.gov/pubmed/21677121
892Wiktorowska-Owczarek A, Nowak JZ: Patogeneza i profilaktyka AMD: rola stresu oksydacyjnego i antyoksydantów. Postepy Hig Med Dosw (online) 2010; 64: 333-334, e-ISSN 1732-2693. Paulus TVM de Jong: Age-Related Macular Degeneration. N Engl J Med 2006; 355: 1474-1485.
893ncbi.nlm.nih.gov/pubmed/29358124
894ncbi.nlm.nih.gov/pubmed/12033441
895ncbi.nlm.nih.gov/pubmed/23519529
896ncbi.nlm.nih.gov/pubmed/24810054
897, 902ncbi.nlm.nih.gov/pubmed/21169874
898ncbi.nlm.nih.gov/pubmed/21508112
899ncbi.nlm.nih.gov/pubmed/12424324
900ncbi.nlm.nih.gov/pubmed/29053808
901ncbi.nlm.nih.gov/pubmed/16530626
903ncbi.nlm.nih.gov/pubmed/22313576
904ncbi.nlm.nih.gov/pubmed/23695657
905, 907ncbi.nlm.nih.gov/pubmed/25408222
908ncbi.nlm.nih.gov/pubmed/25329968
909ncbi.nlm.nih.gov/pmc/articles/PMC4210925/
910ncbi.nlm.nih.gov/pmc/articles/PMC4920203/
911ncbi.nlm.nih.gov/pmc/articles/PMC4848669/
912ncbi.nlm.nih.gov/pubmed/27659166
913ncbi.nlm.nih.gov/pubmed/24729934
914ncbi.nlm.nih.gov/pubmed/27187449
915ncbi.nlm.nih.gov/pubmed/26950104
916ncbi.nlm.nih.gov/pubmed/23075401
917ncbi.nlm.nih.gov/pubmed/21663493
918, 924ncbi.nlm.nih.gov/pubmed/26174951
919ncbi.nlm.nih.gov/pubmed/25091551
920ncbi.nlm.nih.gov/pubmed/28985092
921ncbi.nlm.nih.gov/pubmed/26155161
922ncbi.nlm.nih.gov/pubmed/21282584
923ncbi.nlm.nih.gov/pubmed/9434658
925ncbi.nlm.nih.gov/pubmed/24008411
926ncbi.nlm.nih.gov/pubmed/24036938
927ncbi.nlm.nih.gov/pubmed/25775159
928ncbi.nlm.nih.gov/pubmed/25281824
929ncbi.nlm.nih.gov/pubmed/24309288
930ncbi.nlm.nih.gov/pubmed/26190093
931ncbi.nlm.nih.gov/pubmed/25580276/
932, 933, 934ncbi.nlm.nih.gov/pmc/articles/PMC5733520/
935ncbi.nlm.nih.gov/pubmed/21527754
936ncbi.nlm.nih.gov/pubmed/21690377
937ncbi.nlm.nih.gov/pubmed/26902516
938ncbi.nlm.nih.gov/pubmed/29301231
939ncbi.nlm.nih.gov/pubmed/23341606
940ncbi.nlm.nih.gov/pubmed/28293647
941ncbi.nlm.nih.gov/pubmed/23040806/
942ncbi.nlm.nih.gov/pubmed/23040806/
943ncbi.nlm.nih.gov/pubmed/25835346
944, 1094ncbi.nlm.nih.gov/pubmed/24036938
945ncbi.nlm.nih.gov/pubmed/17652760
946ncbi.nlm.nih.gov/pubmed/25936740
947ncbi.nlm.nih.gov/pubmed/25947075
948ncbi.nlm.nih.gov/pubmed/21928264
949ncbi.nlm.nih.gov/pubmed/23562078
950ncbi.nlm.nih.gov/pubmed/26315784
951ncbi.nlm.nih.gov/pubmed/19433784
952ncbi.nlm.nih.gov/pubmed/18810647
953ncbi.nlm.nih.gov/pmc/articles/PMC2276614/#B76
954ncbi.nlm.nih.gov/pubmed/12370270/
955ncbi.nlm.nih.gov/pubmed/12785728/
956ncbi.nlm.nih.gov/pmc/articles/PMC2276614
957ncbi.nlm.nih.gov/pubmed/14684628/
958, 1075ncbi.nlm.nih.gov/pubmed/17935603
959, 1082ncbi.nlm.nih.gov/pubmed/29158262
963ncbi.nlm.nih.gov/pubmed/27856259
964ncbi.nlm.nih.gov/pubmed/17124036/
965ncbi.nlm.nih.gov/pubmed/23441106
966ncbi.nlm.nih.gov/pubmed/20446039
967 ncbi.nlm.nih.gov/pubmed/20938992
968ncbi.nlm.nih.gov/pubmed/28605813
969ncbi.nlm.nih.gov/pubmed/26760305
970ncbi.nlm.nih.gov/pubmed/28852052
971ncbi.nlm.nih.gov/pubmed/23946637
972Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5:481–489
973en.wikipedia.org/wiki/Hephaestin
975Guo L et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449
976ncbi.nlm.nih.gov/pubmed/26476672
977ncbi.nlm.nih.gov/pubmed/22244091
979ncbi.nlm.nih.gov/pubmed/26883505
980ncbi.nlm.nih.gov/pubmed/7775104
981ncbi.nlm.nih.gov/pubmed/28353645
982ncbi.nlm.nih.gov/pubmed/23485938
983ncbi.nlm.nih.gov/pubmed/24319591
984ncbi.nlm.nih.gov/pubmed/21179240
985ncbi.nlm.nih.gov/pubmed/20157617
986ncbi.nlm.nih.gov/pubmed/26845696
987ncbi.nlm.nih.gov/pmc/articles/PMC4788093/
988ncbi.nlm.nih.gov/pubmed/28760679
989ncbi.nlm.nih.gov/pubmed/29133122
990ncbi.nlm.nih.gov/pubmed/24036938/
991ncbi.nlm.nih.gov/pmc/articles/PMC5288547/
992ncbi.nlm.nih.gov/pubmed/26246285
993ncbi.nlm.nih.gov/pubmed/27304845
994ncbi.nlm.nih.gov/pubmed/27859225
995ncbi.nlm.nih.gov/pubmed/25948251
996, 1038ncbi.nlm.nih.gov/pubmed/21071745
997ncbi.nlm.nih.gov/pubmed/22992301
998, 1091ncbi.nlm.nih.gov/pubmed/24790857
999ncbi.nlm.nih.gov/pubmed/21228388
1000ncbi.nlm.nih.gov/pubmed/21514452
1001ncbi.nlm.nih.gov/pubmed/24376495
1002ncbi.nlm.nih.gov/pubmed/27411920
1003ncbi.nlm.nih.gov/pubmed/25847123
1004ncbi.nlm.nih.gov/pubmed/19875668
1005ncbi.nlm.nih.gov/pubmed/22817743
1006ncbi.nlm.nih.gov/pubmed/26962700
1007sci-hub.tv/10.1016/S1673-8527(09)60077-1
1009ncbi.nlm.nih.gov/pubmed/24515951
1010ncbi.nlm.nih.gov/pubmed/28846772
1012, 1089ncbi.nlm.nih.gov/pubmed/28918027
1013ncbi.nlm.nih.gov/pubmed/25144531
1015ncbi.nlm.nih.gov/pubmed/21693609
1016ncbi.nlm.nih.gov/pubmed/27812755
1017, 1061ncbi.nlm.nih.gov/pubmed/25626969
1018ncbi.nlm.nih.gov/pmc/articles/PMC4248465/
1019ncbi.nlm.nih.gov/pubmed/24018558
1020ncbi.nlm.nih.gov/pubmed/27622388
1021ncbi.nlm.nih.gov/pmc/articles/PMC2276600/
1022ncbi.nlm.nih.gov/pubmed/23844142
1023ncbi.nlm.nih.gov/pubmed/21641389/
1024ncbi.nlm.nih.gov/pubmed/28739342
1025ncbi.nlm.nih.gov/pubmed/17526870
1026ncbi.nlm.nih.gov/pmc/articles/PMC5319229/
1027ncbi.nlm.nih.gov/pubmed/26990160
1028ncbi.nlm.nih.gov/pmc/articles/PMC5644411/
1029ncbi.nlm.nih.gov/pmc/articles/PMC5549471/
1030ncbi.nlm.nih.gov/pubmed/28726777
1031ncbi.nlm.nih.gov/pubmed/27768790
1032ncbi.nlm.nih.gov/pubmed/17870069/
1033ncbi.nlm.nih.gov/pubmed/19266313/
1034ncbi.nlm.nih.gov/pubmed/28373097
1035ncbi.nlm.nih.gov/pubmed/25564448
1036ncbi.nlm.nih.gov/pubmed/27810364
1037ncbi.nlm.nih.gov/pubmed/24106308
1040ncbi.nlm.nih.gov/pubmed/24355922
1041ncbi.nlm.nih.gov/pubmed/23135526
1042ncbi.nlm.nih.gov/pubmed/28429668
1043ncbi.nlm.nih.gov/pubmed/21440663
1044ncbi.nlm.nih.gov/pubmed/21467172
1045ncbi.nlm.nih.gov/pubmed/24216314
1046ncbi.nlm.nih.gov/pubmed/23652486
1047ncbi.nlm.nih.gov/pubmed/28455497
1048ncbi.nlm.nih.gov/pmc/articles/PMC3687521/
1049ncbi.nlm.nih.gov/pubmed/28361293
1050ncbi.nlm.nih.gov/pubmed/7935418/
1051ncbi.nlm.nih.gov/pubmed/15473848/
1052ncbi.nlm.nih.gov/pubmed/18323516/
1053ncbi.nlm.nih.gov/pmc/articles/PMC4862829/
1054ncbi.nlm.nih.gov/pubmed/17909628/
1055ncbi.nlm.nih.gov/pubmed/12882811/
1056ncbi.nlm.nih.gov/pubmed/12882810/
1057ncbi.nlm.nih.gov/pubmed/23873332
1058ncbi.nlm.nih.gov/pubmed/27112838
1059ncbi.nlm.nih.gov/pubmed/16869503
1060ncbi.nlm.nih.gov/pubmed/27064393
1062ncbi.nlm.nih.gov/pubmed/21968016
1064ncbi.nlm.nih.gov/pubmed/27254302
1065ncbi.nlm.nih.gov/pubmed/24667411
1067ncbi.nlm.nih.gov/pubmed/27338342
1068ncbi.nlm.nih.gov/pubmed/24787705
1069ncbi.nlm.nih.gov/pubmed/28560393
1070ncbi.nlm.nih.gov/pubmed/24985474
1071Seitzman RL, Mangione CM, Cauley JA, Ensrud KE, Stone KL, Cummings SR, et al.; Study of Osteoporotic Fractures Research Group. Bone mineral density and age-related maculopathy in older women. J Am Geriatr Soc 2007;55: 740–746.
1072ncbi.nlm.nih.gov/pubmed/26900328
1073ncbi.nlm.nih.gov/pubmed/24780853
1074sci-hub.hk/10.1016/j.preteyeres.2014.06.004
1076ncbi.nlm.nih.gov/pubmed/24812555
1078ncbi.nlm.nih.gov/pubmed/28887057
1079ncbi.nlm.nih.gov/pubmed/29038159
1080ncbi.nlm.nih.gov/pubmed/28918254
1081ncbi.nlm.nih.gov/pubmed/25998275
1083ncbi.nlm.nih.gov/pubmed/20533908/
1084 ncbi.nlm.nih.gov/pubmed/23840644
1085ncbi.nlm.nih.gov/pmc/articles/PMC3687510/
1086, 1106ncbi.nlm.nih.gov/pubmed/21087971
1088ncbi.nlm.nih.gov/pubmed/22072713
1090ncbi.nlm.nih.gov/pubmed/23640042
1092ncbi.nlm.nih.gov/pubmed/26869760
1093ncbi.nlm.nih.gov/pubmed/20700625
1095ncbi.nlm.nih.gov/pubmed/26213307
1096ncbi.nlm.nih.gov/pubmed/15763436
1097ncbi.nlm.nih.gov/pubmed/22509307
1098ncbi.nlm.nih.gov/pubmed/18515591
1099ncbi.nlm.nih.gov/pubmed/26524704
1100ncbi.nlm.nih.gov/pubmed/22589436
1101ncbi.nlm.nih.gov/pubmed/21763674
1103, 1140ncbi.nlm.nih.gov/pubmed/21668780
1104, 1141ncbi.nlm.nih.gov/pubmed/21355157
1105ncbi.nlm.nih.gov/pubmed/20061666
1107ncbi.nlm.nih.gov/pubmed/29354994
1110ncbi.nlm.nih.gov/pubmed/21051716
1111ncbi.nlm.nih.gov/pubmed/25484094
1112, 1114ncbi.nlm.nih.gov/pubmed/26925256
1113Porter T, Bharadwaj P, Groth D, Paxman A, Laws SM, Martins RN, Verdile G (2016) The effects of latrepirdine on amyloid-beta aggregation and toxicity. J Alzheimers Dis 50:895–905
1116ncbi.nlm.nih.gov/pubmed/24845634
1117ncbi.nlm.nih.gov/pubmed/25414314
1118ncbi.nlm.nih.gov/pubmed/2724867
1119ncbi.nlm.nih.gov/pubmed/24366669
1120ncbi.nlm.nih.gov/pubmed/27065854
1121ncbi.nlm.nih.gov/pubmed/29396515
1122sci-hub.hk/10.1089/jop.2016.29007.bsm
1123ncbi.nlm.nih.gov/pubmed/17446204
1124ncbi.nlm.nih.gov/pubmed/24505138
1125ncbi.nlm.nih.gov/pubmed/29361515
1126ncbi.nlm.nih.gov/pubmed/25774332
1127ncbi.nlm.nih.gov/pubmed/25038876
1128ncbi.nlm.nih.gov/pubmed/26211446
1129ncbi.nlm.nih.gov/pubmed/16029884
1130ncbi.nlm.nih.gov/pubmed/12506055
1131ncbi.nlm.nih.gov/pubmed/19799898
1133ncbi.nlm.nih.gov/pubmed/12657616
1134ncbi.nlm.nih.gov/pubmed/14567012
1136ncbi.nlm.nih.gov/pubmed/19151655
1137ncbi.nlm.nih.gov/pmc/articles/PMC5129866/
1138ncbi.nlm.nih.gov/pmc/articles/PMC4016716/
1139sci-hub.hk/10.1016/j.mehy.2008.09.055
1142ncbi.nlm.nih.gov/pubmed/23181358
1143ncbi.nlm.nih.gov/pubmed/28129566
1144ncbi.nlm.nih.gov/pubmed/23469078
1145ncbi.nlm.nih.gov/pubmed/26719667
1146ncbi.nlm.nih.gov/pubmed/20805126
1147ncbi.nlm.nih.gov/pubmed/18588438
1148ncbi.nlm.nih.gov/pubmed/20462142
1149ncbi.nlm.nih.gov/pubmed/26094287
1150ncbi.nlm.nih.gov/pubmed/19422963
1151ncbi.nlm.nih.gov/pubmed/28549846
1152ncbi.nlm.nih.gov/pubmed/26404251
1153ncbi.nlm.nih.gov/pubmed/27880954
1154ncbi.nlm.nih.gov/pubmed/25198169
1156ncbi.nlm.nih.gov/pubmed/29096624
1157ncbi.nlm.nih.gov/pubmed/2250978
1158ncbi.nlm.nih.gov/pmc/articles/PMC5484346/
1159ncbi.nlm.nih.gov/pubmed/23414128
1160ncbi.nlm.nih.gov/pubmed/23831960
1161newsroom.ucla.edu/releases/scientists-pinpoint-how-vitamin-229702
Podziel się tym artykulem na facebooku:

Wirus Borna (Choroba Borna) i wszystko co powinienes o nim wiedzieć

Wirus Borna (Choroba Borna) wywodzi się z Niemczech z miasta o tej samej nazwie, w którym wykryto go 100lat temu u koni. Niektóre badania stwierdzają, że wirus Borna nie jest obecny u ludzi z wieloma zaburzeniami neurologicznymi, kiedy to inne potwierdzają, że jednak występuje u takich osób. Negatywne wyniki na obecność tego wirusa mogą wynikach z faktu iż sporo badań przeprowadzana jest na małych grupach ochotników (30-100 osób) a sam test był przeprowadzany dawno bez sprawdzania przeciwciał przeciwko obydwu genom wykorzystywanym w diagnostyce serotologicznej(teraz możliwe, że i więcej przeciwciał przeciwko specyficznym genom wirusa jest brane pod uwagę). Ponadto na podstawie zebranego materiału uważam, że
wirusem tym, ludzie zarażają się przeważnie od zwierząt lub jedząc surowiznę (oczywiście mogę się mylić ale jest to dość wyraźne jak dla mnie patrzać na to co tu wypunktowałem). Kolejną ważną informacją jest fakt, iż u ludzi z mocną immunosupresją układu odpornościowego wirus ten się nie tylko pokazuje w wyniakach badań, ale i po prostu uaktywnia co potwierdza nauka.
Jeżeli męczysz się z jakąś psychiatryczną chorobą, uważasz że Twój układ odpornościowy nie działa tak jak należy – moim zdaniem wtedy warto zainteresować się tym tematem. Jeden z raportów potwierdza, że test ELISA stworzony przez Bode et al. w którym używa się wrodzone antygeny z wysoką czułością wykrywa wirusa Borna jest dobrą opcją diagnostyczną. 1)sci-hub.hk/10.4103/0255-0857.53200

Powyżej typy/podtypy rodzai testów wykrywania wirusa Borna. 2)sci-hub.hk/10.4103/0255-0857.53200

 

Wirus Borna a jego wykrywalność

  • Innym testem serotologicznym są klasy IgG IgM i IgA dla nukleoproteiny N oraz fosfoproteiny P Wirusa Borna. Na ich podstawie swierdza się, że w Japoni wirus ten jest dość popularny. 3)ncbi.nlm.nih.gov/pubmed/18786855
  • Nie wykryto go także u osób ze stwardnieniem rozsianym 4)ncbi.nlm.nih.gov/pubmed/115588045)ncbi.nlm.nih.gov/pubmed/8892069
  • U imigrantów z Surinamy ze Schizofrenią bytujących w Holandii wirusa Borna także nie znaleziono 6)ncbi.nlm.nih.gov/pubmed/11138637 jednak w Chinach, u schizofreników występuje on u 8.6% przypadków (w porównaniu do osób bez schizofreni u których tego wirusa się nie wykrywa). 7)ncbi.nlm.nih.gov/pubmed/12870028
  • Wirus Borna nie został też znaleziony w krwii 25tyś dawców krwii w Szkocji 8)ncbi.nlm.nih.gov/pubmed/15023186 Z kolei w Japonii znaleziono go u 5% dawców krwii. 9)ncbi.nlm.nih.gov/pubmed/8577314
  • U 18 pacjentów z fibromyalgią z Dani wirusa Borna nie znaleziono w płytnie rdzeniowym. 10)ncbi.nlm.nih.gov/pubmed/11132208
  • Szwedzkie badanie na 18 pacjentach z syndromem przewlekłego zmęczenia także nie wykryło wirusa BDV 11)ncbi.nlm.nih.gov/pubmed/10568886
  • Typowe przeciwciała, które potwierdzają obecność wirusa w organizmie są to p24 i p40 12)ncbi.nlm.nih.gov/pubmed/10596800 13)ncbi.nlm.nih.gov/pubmed/1176432614)ncbi.nlm.nih.gov/pubmed/956626615)ncbi.nlm.nih.gov/pubmed/11092240
  • W jednym z badań na 265 osób z zaburzeniami unipolarnymi i bipolarnymi tylko 12 z nich miało przeciwciała przeciwko wirusowi Borna we krwii. 16)ncbi.nlm.nih.gov/pubmed/3931604
  • Zbadano prątek p24 i wykryto że u nieco ponad 40% Tajlandyczków(zakażonych HIV) obecna lub obecna była aktywna infekcja wirusem Borna (BDV).
  • Występuje u ludzi ze schizofrenią i depresja a jego przeciwciała są zdecydowanie podwyższone u osób z zaburzeniami psychiatrycznymi (w porównaniu do osób zdrowych)17)(Bode and Ludwig, 2003; Carbone, 2001). s (Amsterdam et al., 1985; Bachmann et al., 1999; Bode et al., 1995; Dietrich et al., 2005; Nakaya et al., 1999; Rott et al., 1985; Sauder et al., 1996; Takahashi et al., 1997)18)ncbi.nlm.nih.gov/pubmed/9566266
  • Znaleziono go u 27 osób ze schizofrenią w Brazyli ale i w Japonii także bardzo często występuje u schizofreników (w porównaniu do grupy kontrolnej) 19)ncbi.nlm.nih.gov/pubmed/1862312120)ncbi.nlm.nih.gov/pubmed/9421336
  • Nie występuje u epileptyków w hipokampie 21)sci-hub.hk/10.1016/j.jcv.2006.01.006
  • Wirus ten znajdowany jest u nawet 30% osób z depresją. 22)ncbi.nlm.nih.gov/pubmed/8219801
  • Występuje w zaburzeniach bipolarnych orz w nawracającej depresji. 23)ncbi.nlm.nih.gov/pubmed/10463375
  • Wykrywa się go u ludzi z przewlekłym zmęczeniem (11% osób w grupie osób z CFS w Chinach) 24)ncbi.nlm.nih.gov/pubmed/15340544
  • Kolejnym genem którego przeciwciała powinno się wykrywać w przypadku podejrzenia ryzyka choroby Borna to p10 25)ncbi.nlm.nih.gov/pubmed/11789604 26)ncbi.nlm.nih.gov/pubmed/9349465
  • Raport medyczny na temat 2 rodzin zarażonych wirusem Borna – wirusa wykryto dzięki znalezieniu przeciwciał p40,p24 i gp18 oraz RNA p24 BDV we krwi obwodowej. 27)ncbi.nlm.nih.gov/pubmed/10529109
  • W Japoni osoby z przewlekłym zmęczeniem miały we krwii krążące białko p24 wirusa Borna – było to 8 na 25 badanych osób z tym schorzeniem. 28)ncbi.nlm.nih.gov/pubmed/8549821
  • W jednym z niemieckich badań nie znaleziona Borna kompletnie u nikogo – w mózgach Alzheimerowców, schizofreników, epileptyków i innych. 29)ncbi.nlm.nih.gov/pubmed/10515835
  • Nawet na Uniwerku Poznańskim (medycznym naturalnie) przeprowadzono badania na temat występowania wirusa Borna wśród osób z zaburzeniami psychicznymi i wykazano, że występuje on częściej u osób z zaburzeniami ze spektruk afektywno-lękowym i upośledzeniem umysłowym niż w grupie kontrolnej. 30)ncbi.nlm.nih.gov/pubmed/12218946
  • Zbadano występowanie wirusa Borna u dzieci autystycznych 3 różnymi badaniami laboratoryjnymi wykrywającymi obecność tego wirusa w organizmie człowieka – Analiza immunofluorescencyjna, Western Blot oraz analiza radioizotopowa. Wykrywalność odpowiednio 22%, 48% i 33% u dzieci z ASD(wykrywalność białek N i P tego wirusa). Obecność przeciwciał przeciwko wirusowi Borna – 7.4%. 31)ncbi.nlm.nih.gov/pubmed/29786872
  • Występowanie tego wirusa u koni jest bardzo wysokie (tych z neurologicznymi problemami) – w Szwecji(tzn w badaniu Szwedzkim) wynosi ono.57.7%. 32)ncbi.nlm.nih.gov/pubmed/10226619
  • Wirus Borna w Iranie występuję bardzo często u ludzi – u co 3 osoby z zaburzeniami psychiatrycznymi troche częściej(zwłaszcza u osób z zaburzeniami bipolarnymi i depresją). 33)ncbi.nlm.nih.gov/pubmed/25186971
  • Na Tajwanie także wykazano, że osoby ze schizofrenią oraz depresją mają wyższe poziomy przeciwciał przeciwko wirusowi Borna 34)ncbi.nlm.nih.gov/pubmed/10089006
  • Badanie chińskie w którym wykryto BDV u 21% osób z syndromem przewlekłego zmęczenia. 35)ncbi.nlm.nih.gov/pubmed/15932738
  • Jest obecny u osób z wirusowym zapaleniem mózgu (poza przypadkami ze stwardnieniem rozsianym i chorobami nerwów obwodowych). 36)ncbi.nlm.nih.gov/pubmed/19364367
  • W szpitalach chińskich 21.8% personelu medycznego wykazuje w swojej krwi krążące kompleksy immunologiczne specyficzne dla wirusa Borna,zwłaszcza personel medyczny wydziałów psychiatrycznych oraz onkologicznych. 37)ncbi.nlm.nih.gov/pubmed/25888756
  • W jednym z badań zbadano ludzi na Litwie – tych zdrowych i z zaburzeniami psychicznymi – ta druga grupa charakteryzowała się infekcjami opisywanym wirusem znacznie częściej niż grupa kontrolna. 38)ncbi.nlm.nih.gov/pubmed/27809822
  • Glikoproteina gp18 także może być markerem wykrywającym tego wirusa. 39)Borna disease virus: implications for human neuropsychiatric illness
    W. Ian Lipkin, Anette Schneemann and Marylou V. Solbrig

 

Co powoduje wirus Borna (choroba Borna)

  • Wirus Borna wykazuje tropizm w stosunku do neuronów czyli układ odpornościowy może zidentyfikować twoje własne elementy układu nerwowego jako tego wirusa. 40)ncbi.nlm.nih.gov/pubmed/14581559
  • Wirus ten lubi przebywać w systemie limbicznym który odpowiada za samopoczucie, zachowanie i pamięć. Przeważnie jest w stanie uśpionym przez całe swoje życie. Związany jest z zaburzeniami psychiatrycznymi z podatnymi na niego osobami. 41)ncbi.nlm.nih.gov/pubmed/9450235
  • Wywołuje meningoencefalopatię. W Zakażeniu HIV (w początkowej fazie) wykrywany jest w 4-8% przypadków natomiast w późnej fazie nawet i 14%. 42)ncbi.nlm.nih.gov/pubmed/8877141
  • U myszy zakażonych tym wirusem znaleźć go można w większości organów w tym i mózgu – jednak zwierzęta te nie wykazują żandych oznak choroby. 43)ncbi.nlm.nih.gov/pubmed/11517401
  • Może wywołać lekką encefalopatię która nie postępuje w sensie nie przechodzi w stan tragiczny że tak powiem. W tym badaniu pomimo, że zwierzęta wykazały wysoki poziom przeciwciał przeciwko temu wirusowi nie doszło do zakażenia centralnego układu nerwowego. 44)ncbi.nlm.nih.gov/pubmed/7831798
  • Może mieć on jakiś wpływ na przebieg w stwardniejącym zapaleniu mózgu i mięśni ale go nie wywołuje. 45)ncbi.nlm.nih.gov/pubmed/16148853
  • Cytokina TGF beta reguluje zapalenie mózgu w infekcji wirsem Borna a limfocyty CD8+ hamują tworzenie się przeciwciał. 46)ncbi.nlm.nih.gov/pubmed/1940357
  • Posiada w sobie białko X które pozwala mu uniknąć apoptozy i przetrwać w układzie nerwowym 47)ncbi.nlm.nih.gov/pubmed/19211764
  • Rybawiryna (Ribavirin) jest skuteczna vs wirus Borna. Lek ten obniża poziomy komórek CD4 i CD8 oraz mikrogleju któe ten wirus podwyższa. 48)ncbi.nlm.nih.gov/pubmed/1043888949)ncbi.nlm.nih.gov/pubmed/12069992
  • Wywołuje meningoencefalopatie u owiec i koni oraz powoduje stan zapalny centralnego i obwodowego układu nerwowego.50)ncbi.nlm.nih.gov/pubmed/24153231
  • Po infekcji wirusem Borna poziomy interferonu gamma z czasem się zwiększają(nawet i dopiero po miesiącu od infekcji) tak samo jak poziomy limfocytów CD4 i 8(te akurat w początkowej fazie infekcji i pozostają podwyższone także i w późnej fazie). Sugeruje się, że CD8+ hamują stan zapalny i łagodzą zaburzenia neurologiczne podczas infekcji.
  • Infekcja w/w wirusem może zaatakować komórki Purkinjego w móżdzku i spowodować ich apoptozę(poprzez pobudzenie układu odpornościowego). 51)ncbi.nlm.nih.gov/pubmed/10321982
  • Może wywołać stan zapalny siatkówki oka 52)ncbi.nlm.nih.gov/pubmed/2100191
  • U szczurów ten wirus powoduje redukcję fotoreceptorów(odrazu na myśl przychodzi mi zwyrodnienie plamki żółtej – AMD ,ciekawe czy może być zamieszany w patologię tego schorzenia) redukując takżę neurony w tym rejonie. Pobudza mikroglej i makrofagi,zaburza dzialanie komórek Mullera. 53)ncbi.nlm.nih.gov/pubmed/12165671 Co ciekawe u królików robi to samo i niszczy komórki nabłonka barwnikowego oraz fotoreceptory jak i również powoduje stan zapalny w pobliżu żył naczyniowych. 54)ncbi.nlm.nih.gov/pubmed/434068 . U koni także można go znaleźć w tkance oka. 55)ncbi.nlm.nih.gov/pubmed/8520721
  • U myszy u których wykryto fosfoproteinę (P) wirusa Borna w komórkach gleju zauważono, że wykazująone zaburzenia behawioralne takie jak agresywność, nadpobudliwość i problemy z pamięcią. Ponadto wykryto u nich obniżone poziomy BDNF i serotoniny(wiadomo zatem skąd może wynikać depresja) oraz obniżenie gęstości synaptycznej. Stwierdza się, że fosfoproteina P wirusa Borna powoduje dysfunkcje komórek gleju a w tym wypadku myszy mogą rozwinąć zaburzenia psychiatryczne. 56)ncbi.nlm.nih.gov/pubmed/12857949
  • Choroba Borna wywołana przez wirusa o tej samej nazwie. Może zostać zahamowana poprzez użycie interferonu alfa/beta 57)ncbi.nlm.nih.gov/pubmed/10446654 58)ncbi.nlm.nih.gov/pubmed/11483767
  • Szczury zarażone wirusem Borna wykazują steoretypowe zaburzenia behawioralne oraz mają zaburzony szlak mezokortykalny dopaminy(jej podwyższone poziomy w przedniej korze mózgowej) 59)ncbi.nlm.nih.gov/pubmed/8886296
  • Interferon gamma także dobrze sobie radzi z tym wirusem 60)ncbi.nlm.nih.gov/pubmed/1472227661)ncbi.nlm.nih.gov/pubmed/15503205
  • Powoduje zaburzenia wytwarzania tlenku azotu NO(Wirus Borna zwiększa poziomy iNOS) 62)ncbi.nlm.nih.gov/pubmed/9222348 63)ncbi.nlm.nih.gov/pubmed/7690410 . Może on zwiększyć poziomy NO nawet i 30krotnie w móżgu jak i rdzeniu kręgowym (przynajmniej u szczurów) 64)ncbi.nlm.nih.gov/pubmed/7539914
  • Zarówno badania serologiczne jak i epidemiologiczne potwierdzają, że BDV może zainfekować ludzi. Noworodki szczurze rozwijają zaburzenia neurorozwojowe, psychologiczne i neurobehawioralne takie,jakie widuje się w wielu chorobach psychiatrycznych u ludzi. 65)ncbi.nlm.nih.gov/pubmed/12424704
  • Wirus Borna hamuje plastyczność synaptyczną odpowiedzialną za uczenie się i pamięć. 66)ncbi.nlm.nih.gov/pubmed/1755389367)ncbi.nlm.nih.gov/pubmed/10729116
  • Możliwe, że może powodować akumulację amyloidu beta w naczyniach krwionośnych prowadząc do choroby Alzheimera.68) sci-hub.hk/10.1016/j.jalz.2008.12.001
  • U szczużych nowordków wirus ten powoduje apoptozę(śmierć) neuronów w hipokampie, móżdżku i korze mózgowej – nazywa się to noworodkową chorobą Borna). Zwiększa aktywację kaspazy 3 (odpowiedzialna za śmierć komórkową) w między innymi hipokampie. 69)ncbi.nlm.nih.gov/pubmed/18057239
  • Białko X wirusa Borna zapobiega apoptozie komórki (co jest naturalną reakcją obronną w przypadku infekcji organizmu człowieka). 70)ncbi.nlm.nih.gov/pubmed/19420156
  • Zwiększa poziomy cytokiny TGF beta w mózgu 71)ncbi.nlm.nih.gov/pubmed/19376261
  • Ma powinowactwo do układu limbicznego, który odpowiedzialny jest za pamięć, zachowanie i emocje. Sam wirus nie powoduje uszkodzeń, problemem jest układ odpornościowy który na niego może zbyt gwałtownie zareagować prowadząc do zniszczeń. 72)Shanker V, Kao M, Hamir A, Sheng H, Koprowaski
    H, Dietzschold B. Kinetics of virus spread and change in levels of several cytokines mRNA in the brain after intranasal infection of rats with Borna disease virus. J Virol 1992;66:992-8.
  • W mózgu pobudzane są cytokiny zapalne IL-6, IL-1alfa, TNF alfa i iNOS.73) Stitz L, Dietzschold B, Carbone KM. Immunopathogenesis of
    Borna disease. Curr Top Micrbiol Immunol 1995;190:75-92
  • Może hamować działanie receptorów dopaminowych D2 i D4(dopamina się do nich nie przyczepia). 74)Lipkin WI, Hatalski CG, Briese T. Neurobiology of Bornadisease virus. J Neurovirol 1997;3:S17-20.
  • Zahamowanie nadmiernie pobudzonych limfocytów CD4 i 8 hamuje postęp infekcji wirusem Borna 75)ijmm.org/article.asp?issn=0255-0857;year=2009;volume=27;issue=3;spage=191;epage=201;aulast=Thakur
  • Może hamować czynnik trakskrypcyjny p53 (hamuje on nowotworzenie czyli powstawanie nowotworów, reguluje cykl życiowy komorek i naprawia materiał genetyczny) 76)ncbi.nlm.nih.gov/pubmed/1458156177)biotechnologia.pl/biotechnologia/charakterystyka-bialka-p53-i-jego-rola-w-leczeniu-nowotworow,12676
  • Infekuje neuralne komórki progenitorowe i zaburza neurogenezę czyli powstawanie nowych neuronów. Zaburza neurogenezę GABA co wpływa na powstawanie chorób neuropsychiatrycznych. 78)ncbi.nlm.nih.gov/pubmed/25923687
  • Sugeruje się, że możę przyczyniać się nie tylko zaburzeń nastroju i schizofreni ale i również do autyzmu.
  • Hamuje synaptogenezę pobudzaną przez czynnik BDNF co zaburza prawidłowe funkcjonowanie neuronów. 79)ncbi.nlm.nih.gov/pubmed/15033926
  • Zaburza degradację tryptofanu(negatywnie wpływa na enzymy szlaku kinureniny w mózgu) co powoduje nadmierną produkcję neurotoksyny kwasu chinolinowego. 80)ncbi.nlm.nih.gov/pubmed/28446679
  • Wirus Borna pobudza mikroglej co z kolei aktywuje cytokiny prozapalne. 81)ncbi.nlm.nih.gov/pubmed/17020949
  • W mózgach koni, Borna atakując hipokamp doprowadza do zwiększonego poziomu neurotoksycznego amoniaku (obniża z kolei poziomy glutaminianu czy też kwas linolowy) 82)ncbi.nlm.nih.gov/pubmed/24956478
  • Może zaburzać funkcjonowanie astrocytów poprzez obniżenie aktywności białka S100B. 83)ncbi.nlm.nih.gov/pubmed/17376896
  • Ma negatywny wływ na mikroRNA które związane są z rozwojem układu nerwowego. 84)ncbi.nlm.nih.gov/pubmed/26004383
  • Może powodować zaburzenia funkcji astrocytów do pobierania glutaminianu co przy prawidłowo funkcjonujących w/w komórkach mózgowych zapobiega neurotoksyczności. 85)ncbi.nlm.nih.gov/pubmed/11044088
  • Wirus Borna może bytować także w i komórkach Schwanna – komórki te tworzą osłonkę mielinową aksonu włokien nerwowych. 86)pl.wikipedia.org/wiki/Komórka_Schwanna87)ncbi.nlm.nih.gov/pubmed/2507750
  • W Wielkiej Brytani zaledwie 2.5% farmerów zarażonych jest tym wirusem jednak jak pdokreślają badacze nie wpływa to na ich śmiertelność czy zdrowie. 88)ncbi.nlm.nih.gov/pubmed/15760925
  • Możliwe, że przyczynia się do działania antynowotworowego w przypadku nerwiaka złośliwego (neuroblastoma)(powoduje zwiększenie aktywności białka Bax i obniżenie Bcl-2 które przyczyniają się do śmierci komórkowej tego typu nowotworu) 89)ncbi.nlm.nih.gov/pubmed/29115502
  • MiR-122(MikroRNA) hamuje transkrypcję i replikacje genów wirusa Borna oraz aktywuje syntezę i wydzielanie interferonu. 90)ncbi.nlm.nih.gov/pubmed/20561966
  • Wirus Borna przenika do komórek tylko w obecności cholesterolu. 91)ncbi.nlm.nih.gov/pubmed/19129439
  • Glikoproteina wirusa Borna pozwala mu na infekcje z komórki na komórkę 92)ncbi.nlm.nih.gov/pubmed/26332529
  • Może hamować indukowaną syntaże tlenku azotu (iNOS) w astrocytach 93)ncbi.nlm.nih.gov/pubmed/17543364. Z kolei w tym badaniu sugeruje się, że może pobudzać wydzielanie NO powodując neurodegenerację 94)ncbi.nlm.nih.gov/pubmed/7681993
  • W czasie aktywnej infekcji wirusem Borna tj powstaniem encefalopati i jej postępem równolegle zaburzony jest układ cholinergiczny(odpowiada za skórcz/rozkurcz mięśni,krótką pamięć i inne funkcje życiowe). 95)ncbi.nlm.nih.gov/pubmed/11726791
  • Interferon gamma w tej infekcji pełni funkcje protekcyjne względem neuronów (ataku ich przez przez limfocyty CD8) 96)ncbi.nlm.nih.gov/pubmed/19359516 97)ncbi.nlm.nih.gov/pubmed/16227271
  • U małpy wirs ten powoduje nadaktywność,zaburzenia ruchu czy też apatyczność 98)ncbi.nlm.nih.gov/pmc/articles/PMC2627619/pdf/9204293.pdf
  • Białko X wirusa BDV hamuje wydzielanie się typu 1 interferonu 99)ncbi.nlm.nih.gov/pubmed/23100370100)ncbi.nlm.nih.gov/pubmed/23939047 przez wpływ na mikroRNA-155 101)ncbi.nlm.nih.gov/pubmed/23428672
  • Zwiększa poziomy glutaminianu powodując spadek ilości neuronów pod względem ich objętości i ilości w prążkowiu mózgowym 102)ncbi.nlm.nih.gov/pubmed/17613708
  • Kannabinoidy chronią komórki progenitorowe w prążkowiu mózgowym przed uszkodzeniem przez wirusa Borna poprzez zahamowanie aktywacji mikrogleju. 103)ncbi.nlm.nih.gov/pubmed/18569459
  • Interesującym jest fakt, że pobudzenie zapalnego czynnika transkrypcyjnego NF-kappaB hamuje rozprzestrzenianie się wirusa Borna. 104)ncbi.nlm.nih.gov/pubmed/15857990
  • Nadmiar komórek CD8+ podczas infekcji wirusem Borna może przyczynićsiędo destrukcji tkanek mózgu i ogólno pojętej immunopatologi. 105)ncbi.nlm.nih.gov/pubmed/7912707
  • Białko P wirusa Borna zaburza prawidłową neuro transmisję receptorów GABA co może spowodować nadaktywność i lęk. 106)ncbi.nlm.nih.gov/pubmed/18815298
  • W mózgach szczurów zainfekowanych przez wirusa Borna wykrywa się nadmiernie podniesione czynniki COX-2 oraz CGRP(czynniki stanu zapalnego). 107)ncbi.nlm.nih.gov/pubmed/10078970
  • Obniżone poziomy koneksyny36 w chorobie Borna powodują zaburzenia funkcjonowania sieci neuronalnej w mózgu 108)ncbi.nlm.nih.gov/pubmed/19038327
  • Zwiększone są poziomy metalotioenin 1 i 2(cząsteczki oczyszczające organizm z metali ciężkich i odpowiedzialne za obronę antyoksydacyjną) od 7-40x w różnych rejonach mózgu.109) pl.wikipedia.org/wiki/Metalotioneiny110)ncbi.nlm.nih.gov/pubmed/16612977
  • Podnosi poziomy serotoniny, noradrenaliny, dopaminy. 111)ncbi.nlm.nih.gov/pubmed/10518583/112)ncbi.nlm.nih.gov/pmc/articles/PMC88987/#B113
  • Może powodować objawy padaczki idiopatycznej jak i też zaburzenia jedzenia. 113)ncbi.nlm.nih.gov/pmc/articles/PMC88987/ 114)ncbi.nlm.nih.gov/pubmed/22848506

 

 

Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!

Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic

Obserwuj mnie na instagramie www.instagram.com/premyslaw84

Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”

Literatura

Literatura
1, 2sci-hub.hk/10.4103/0255-0857.53200
3ncbi.nlm.nih.gov/pubmed/18786855
4ncbi.nlm.nih.gov/pubmed/11558804
5ncbi.nlm.nih.gov/pubmed/8892069
6ncbi.nlm.nih.gov/pubmed/11138637
7ncbi.nlm.nih.gov/pubmed/12870028
8ncbi.nlm.nih.gov/pubmed/15023186
9ncbi.nlm.nih.gov/pubmed/8577314
10ncbi.nlm.nih.gov/pubmed/11132208
11ncbi.nlm.nih.gov/pubmed/10568886
12ncbi.nlm.nih.gov/pubmed/10596800
13ncbi.nlm.nih.gov/pubmed/11764326
14, 18ncbi.nlm.nih.gov/pubmed/9566266
15ncbi.nlm.nih.gov/pubmed/11092240
16ncbi.nlm.nih.gov/pubmed/3931604
17(Bode and Ludwig, 2003; Carbone, 2001). s (Amsterdam et al., 1985; Bachmann et al., 1999; Bode et al., 1995; Dietrich et al., 2005; Nakaya et al., 1999; Rott et al., 1985; Sauder et al., 1996; Takahashi et al., 1997)
19ncbi.nlm.nih.gov/pubmed/18623121
20ncbi.nlm.nih.gov/pubmed/9421336
21sci-hub.hk/10.1016/j.jcv.2006.01.006
22ncbi.nlm.nih.gov/pubmed/8219801
23ncbi.nlm.nih.gov/pubmed/10463375
24ncbi.nlm.nih.gov/pubmed/15340544
25ncbi.nlm.nih.gov/pubmed/11789604
26ncbi.nlm.nih.gov/pubmed/9349465
27ncbi.nlm.nih.gov/pubmed/10529109
28ncbi.nlm.nih.gov/pubmed/8549821
29ncbi.nlm.nih.gov/pubmed/10515835
30ncbi.nlm.nih.gov/pubmed/12218946
31ncbi.nlm.nih.gov/pubmed/29786872
32ncbi.nlm.nih.gov/pubmed/10226619
33ncbi.nlm.nih.gov/pubmed/25186971
34ncbi.nlm.nih.gov/pubmed/10089006
35ncbi.nlm.nih.gov/pubmed/15932738
36ncbi.nlm.nih.gov/pubmed/19364367
37ncbi.nlm.nih.gov/pubmed/25888756
38ncbi.nlm.nih.gov/pubmed/27809822
39Borna disease virus: implications for human neuropsychiatric illness
W. Ian Lipkin, Anette Schneemann and Marylou V. Solbrig
40ncbi.nlm.nih.gov/pubmed/14581559
41ncbi.nlm.nih.gov/pubmed/9450235
42ncbi.nlm.nih.gov/pubmed/8877141
43ncbi.nlm.nih.gov/pubmed/11517401
44ncbi.nlm.nih.gov/pubmed/7831798
45ncbi.nlm.nih.gov/pubmed/16148853
46ncbi.nlm.nih.gov/pubmed/1940357
47ncbi.nlm.nih.gov/pubmed/19211764
48ncbi.nlm.nih.gov/pubmed/10438889
49ncbi.nlm.nih.gov/pubmed/12069992
50ncbi.nlm.nih.gov/pubmed/24153231
51ncbi.nlm.nih.gov/pubmed/10321982
52ncbi.nlm.nih.gov/pubmed/2100191
53ncbi.nlm.nih.gov/pubmed/12165671
54ncbi.nlm.nih.gov/pubmed/434068
55ncbi.nlm.nih.gov/pubmed/8520721
56ncbi.nlm.nih.gov/pubmed/12857949
57ncbi.nlm.nih.gov/pubmed/10446654
58ncbi.nlm.nih.gov/pubmed/11483767
59ncbi.nlm.nih.gov/pubmed/8886296
60ncbi.nlm.nih.gov/pubmed/14722276
61ncbi.nlm.nih.gov/pubmed/15503205
62ncbi.nlm.nih.gov/pubmed/9222348
63ncbi.nlm.nih.gov/pubmed/7690410
64ncbi.nlm.nih.gov/pubmed/7539914
65ncbi.nlm.nih.gov/pubmed/12424704
66ncbi.nlm.nih.gov/pubmed/17553893
67ncbi.nlm.nih.gov/pubmed/10729116
68 sci-hub.hk/10.1016/j.jalz.2008.12.001
69ncbi.nlm.nih.gov/pubmed/18057239
70ncbi.nlm.nih.gov/pubmed/19420156
71ncbi.nlm.nih.gov/pubmed/19376261
72Shanker V, Kao M, Hamir A, Sheng H, Koprowaski
H, Dietzschold B. Kinetics of virus spread and change in levels of several cytokines mRNA in the brain after intranasal infection of rats with Borna disease virus. J Virol 1992;66:992-8.
73 Stitz L, Dietzschold B, Carbone KM. Immunopathogenesis of
Borna disease. Curr Top Micrbiol Immunol 1995;190:75-92
74Lipkin WI, Hatalski CG, Briese T. Neurobiology of Bornadisease virus. J Neurovirol 1997;3:S17-20.
75ijmm.org/article.asp?issn=0255-0857;year=2009;volume=27;issue=3;spage=191;epage=201;aulast=Thakur
76ncbi.nlm.nih.gov/pubmed/14581561
77biotechnologia.pl/biotechnologia/charakterystyka-bialka-p53-i-jego-rola-w-leczeniu-nowotworow,12676
78ncbi.nlm.nih.gov/pubmed/25923687
79ncbi.nlm.nih.gov/pubmed/15033926
80ncbi.nlm.nih.gov/pubmed/28446679
81ncbi.nlm.nih.gov/pubmed/17020949
82ncbi.nlm.nih.gov/pubmed/24956478
83ncbi.nlm.nih.gov/pubmed/17376896
84ncbi.nlm.nih.gov/pubmed/26004383
85ncbi.nlm.nih.gov/pubmed/11044088
86pl.wikipedia.org/wiki/Komórka_Schwanna
87ncbi.nlm.nih.gov/pubmed/2507750
88ncbi.nlm.nih.gov/pubmed/15760925
89ncbi.nlm.nih.gov/pubmed/29115502
90ncbi.nlm.nih.gov/pubmed/20561966
91ncbi.nlm.nih.gov/pubmed/19129439
92ncbi.nlm.nih.gov/pubmed/26332529
93ncbi.nlm.nih.gov/pubmed/17543364
94ncbi.nlm.nih.gov/pubmed/7681993
95ncbi.nlm.nih.gov/pubmed/11726791
96ncbi.nlm.nih.gov/pubmed/19359516
97ncbi.nlm.nih.gov/pubmed/16227271
98ncbi.nlm.nih.gov/pmc/articles/PMC2627619/pdf/9204293.pdf
99ncbi.nlm.nih.gov/pubmed/23100370
100ncbi.nlm.nih.gov/pubmed/23939047
101ncbi.nlm.nih.gov/pubmed/23428672
102ncbi.nlm.nih.gov/pubmed/17613708
103ncbi.nlm.nih.gov/pubmed/18569459
104ncbi.nlm.nih.gov/pubmed/15857990
105ncbi.nlm.nih.gov/pubmed/7912707
106ncbi.nlm.nih.gov/pubmed/18815298
107ncbi.nlm.nih.gov/pubmed/10078970
108ncbi.nlm.nih.gov/pubmed/19038327
109 pl.wikipedia.org/wiki/Metalotioneiny
110ncbi.nlm.nih.gov/pubmed/16612977
111ncbi.nlm.nih.gov/pubmed/10518583/
112ncbi.nlm.nih.gov/pmc/articles/PMC88987/#B113
113ncbi.nlm.nih.gov/pmc/articles/PMC88987/
114ncbi.nlm.nih.gov/pubmed/22848506
Podziel się tym artykulem na facebooku:

Recenzja książki „Neuroimmunologia kliniczna” J.Losy

„Neuroimmunologia kliniczna” J.Losy. Jakis czas temu dostałem wiadomość  od koleżanki o zamiarze zakupu 2 książek w związku z problemami związanymi z jej synem (autyzm). Zaproponowałem, że sam je zakupie,przeczytam i odsprzedam za 60% ceny – mam nadzieje ze koleżanka po przeczytaniu tego wpisu dalej będzie chciała je ode mnie odkupić :-). Już kiedyś przeglądając różne pozycje książkowe, obydwie książki przeleciały mi przed wzrokiem podczas wertowania internetowych księgarń a,le wtedy obydwie olałem uważając, że będzie to najzwyklejsza cienizna. Zarówno neuroimmunologie kliniczna pod redakcją Losego jak i „Choroby zapalne układu nerwowego u dzieci” przeczytałem jednym tchem. Neuroimmunologia kliniczna i choroby zapalne układu nerwowego są pozycjami książkowymi, które zostały napisane przez szereg panów z tytułami prof. i dr. przed imieniem i nazwiskiem (nie bardzo mnie to ekscytuje bo poziom wiedzy niektórych takich uczonych w Polsce jest no coż…sami wiecie jaki jest chodzac czasami do lekarzy) który z początku nie zrobił na mnie wrażenia – jednak z każda kartką obydwie książki wciągały mnie coraz bardziej i to na tyle,aby potwierdzić , że Neuroimmunologia kliniczna pod redakcja J.Losy jest książką co najnmniej wyśmienitą – prawdopodobnie najlepszą jaką czytałem z zakresu neurologii. Zdecydowanie polecam zakup,streszczenie poniżej,a koleżance Marcie dziękuje za opcje przeczytania za ułamek ceny sklepowej.

 

– PRR (receptory rozpoznające wzroce – pattern recognition receptors) to receptory rozpoznające molekuły na komórkach mikroorganizmów jak np.polisacharyd LPS
– Chemokiny – są to cytokiny o właściwościach chemotoksyn migrujące do miejsca uszkodzenia tkankowego.
– Mózg ma 2 bariery – krew-mózg oraz krew płyn mózgowy-rdzeniowy. W obrębie splotu naczyniówkowego komór mózgu i błony pajęczynówkowej. Stają się one przepuszczalne pod wpływem infekcji i urazów
– Leukocyty mogą przenikać barierę krew-mózg
– OUN(ośrodkowy układ nerwowy) ma słabszą obronę immunologiczną od reszty rejonów ciała
– W mózgu reakcja odpowiedzi wrodzonej i nabytej układu odpornościowego jest spowolniona
– Stan spoczynkowy mikrogleju utrzymywany jest przez neurony i astrocyty
– Neurony mają na swojej powierzchni glikoproteinę CD200 dla której receptor znajduje się na komórkach mikrogleju. Brak CD200 u myszy = pobudzony mikroglej
– Neurony hamują mikroglej poprzez czynniki humoralne w tym noradrenalinę. Peptyd jelitowy VIP, czynnik NGF, neurotrofinę 3 i inne.
– CXCL1 – chemokina fraktalikalna – hamuje mikroglej, produkowany przez pewne typy neuronów. Komórki mikrogleju posiadają receptory CX3CL1. W wyniku interakcji receptora z ligandem dochodzi do wzrostu wewnątrzkomórkowego wapnia co hamuje produkcję TNF alfa i neurotoksyczność mikrogleju
– Astrocyty hamują mikroglej poprzez cytokinę TGF beta i IL-10
– Wzrost mikrogleju występuje jeśli neurony zaczynają wytwarzać substancję P
– Mikroglej usuwa wtedy uszkodzone neurony (które pobudzają jego wytwarzanie) i indukują naprawę. Mikroglej wytwarzać wtedy może cytokin prozapalne TNF alfa, IL-1, IL-6, IL-12, IL-8, PGE-2, PGD-2, tromboksan B oraz wolne rodniki jak i również posiada zdolność fagocytozy. Może prowadzić do degradacji struktur nerwowych
– mikroglej ma 2 fenotypy aktywacji – M1 – prozapalny i neurotoksyczny oraz M2 – przeciwzapalny, neuroprotekcyjny i nasilający fagocytozę
– Astrocyty mogą hamować proliferację limfocytów T, produkują IL-2 i 10
– Oligodendrocyty – frakcja glejowa warunkująca mielinizację aksonów. Mogą być uszkodzone w stanach zapalnych podczas sztormu cytokinowego
– Przy każdym uszkodzeniu bariery krew-mózg neurony narażone są na destrukcję przez limfocyty, monocyty i komórki nk
– Fraktalkina obecna na neronach hamuje cytotoksyczność mikrogleju
– NGF hamuje molekuły mikrogleju CD40 i CD86
– Dopamina, VIP i GABA hamują cytokiny prozapalne produkowane przez mikroglej
– IL-10 i TGF beta produkowane są przez neurony, hamują aktywność MHC II, cytokiny zapalne i syntezę tlenku azotu przez komórki mikrogleju
– Amyloid jak i CRP wiążą się do C1 – składowej dopełniacza, aktywując ją
– Cytokiny mogą przenikać barierę krew-mózg, wpływają na oś HPA i funkcje neuroprzekaźników
– PRR wykrywają wzorce tylko na organizmach jednokomórkowych (prokariota). Wykrywany jest LPS, kwas lipotejchojowy, cpG, dsRNA
– PRR są 3 rodzaje – sekrecyjne, endocytarne i sygnałowe
– Do sekrecyjnych należą kolektyny z rodzin lektyn zależnych od wapnia (lektyny typu C) np. lektyny wiążące mannozę – MBL która wiąże się z cukrami na drobnoustrojach i aktywuje układ dopełniacza. MBL jest między innymi w mózgu
– Endocytarne PRR warunkują wnikanie patogenu do komórki fagocytarnej i transfer do lizosomów wraz z degradacją. Eliminują kwas lipotejchojowy bakterii gram dodatnich z krwiobiegu.
– PRR sygnałowe do któych należą TLR (toll like receptors). Ich aktywacja indukuje wewnątrzkomórkowe szlaki sygnałowe i pobudza geny odpowiedzi immunologicznej. Występują one praktycznie wszedzie – także w OUN.
– Ekspresja TLR w OUN w stwardnieniu rozsianym jest znacznie wyższa
– Myszy bez TLR2 szybko padają a te co dalej żyły miały cięższe objawy
– TLR rozpoznaje nie tylko molekuły bakteryjne i wirusowe ale i także produkty fizjologicznej oraz patologicznej przemiany materii


– Cytokina zapalna IL-17 może uszkadzać mielinizację aksonów przez komórki Schwanna
– IL-13 produkowana jest przez makrofagii i mikroglej
– Limfocyty T wykazują reaktywność wobec mieliny i razem z limfocytami B mogą wnikać w najbliższe otoczenie nerwu
– Niektóre patogeny mają epitiopy (determinanty antygenowe) takie same lub podobne do tych które ma mielina. Jest to nazywane mimikrą molekularną
– Kiedy limfocyty T i B przenikają przez barierę krew-nerw mogą spowodować stan zapalny i niszczą osłonkę mielinową nerwu. Dochodzi do aktywacji układu dopełniacza w tym jego końcowych produktów – kompleksu ataku błony (MAC C5b-C9)
– Chemokiny wydzielane przez limfocyty T i śródbłonki naczyniowe powodują nagromadzenie makrofagów wokół nerwów które to uszkadzają mielinę. Makrofagi poprzez wydzielanie proteazy, fosfolipazy, ROS i azotu niszczą pnie nerwowe i zwiększają przepuszczalność naczyniową. Prowadzą do zniszczenia bariery krew-nerw.

– Autoprzeciwciała naciekając na nerw aktywują układ dopełniacza, którego kompleks ataku błony degeneruje otoczkę mielinową
– Komórki Schwanna w stanach aktywacji wykazują ekspresję MHC II i mogą prezentować antygen powodując wzrost limfocytów i wydzielanie cytokin IL-1, TNF i IL-6. Aktywują białka regulujące aktywację układu dopełniacza
– CRH w podwzgórzu stymuluje ACTH w przysadce a to stymuluje wydzielanie glikokortykosteroidów w nadnerczach
– W stanie stresu uwalniane są także endorfiny i enkefaliny które działają immunosupresyjnie oraz glikokortykosteroidy
– Poprzez nerw błędny limfocyty przekraczają barierę krew-mózg
– Ostre zapalenia mózgu i rdzenia możą powstać po szczepieniu ochronnym
– Ostre rozsiane zapalenie mózgu i rdzenia może wynikać z wirusa EBV czy też opryszczki. U części osób wystąpi demielinizacja.

– W ostrym rozsianym zapaleniu rdzenia i mózgu MMP-9 jest b.wysoko i jego zbicie w dół = zdrowienie
– Komórki CD4 generują IL-17
– Z mikrogleju powstają makrofagi glejowe
– Stan zapalny mózgu powoduje drżenia, zapalenia nerwu wzrokowego, sztywność, zapalenia rdzenia, problemy z wymową
– Do ADEM(Ostre rozsiane zapalenie rdzenia i mózgu) może dojść w przypadku infekcji paciorkowcami. Na początku pojawia się nieuzasadniony śmiech, potem objawy pozapiramidowe, dystonia, drżenia
– Białko zasadowe mieliny jest na wysokim poziomie(czasami) w ADEM
– 400-500 mg/kg immunoglobulin przez 5dni – może wyleczyć ADEM
– Stwardnienie rozsiane – wyższe ryzyko przy niskich poziomach D3
– Większa podatność w SM mają osoby z polimorfizmem IL-2RA i IL17RA czy HLA prezentującym antygen pomocniczym limfocytom T
– 4 postacie SM – rzutowo remisyjna, pierwotnie postępująca, wtórnie postępująca, postać rzutowo postępująca
– Postępujący spastyczny niedowład nóg występuje w 83% przypadków
– Początek choroby to przenikanie limfocytów przez barierę krew-mózg. Pobudzają cytokiny prozapalne, następuje aktywacja makrofagów, mikrogleju i glutaminianu co doprowadza do ognisk demielinizacyjnych
– Podatność osoby na SM może warunkować infekcja wirusem odry, WZW-B , HTCV-1, paciorkowcem z grupy A i korona wirusami
– Białka szoku cieplnego mogą działać jak antygeny w SM
– W PMR(płyn mózgowo-rdzeniowy) w SM następuje wzrost chemokin CCL 3 , CCL5, CXCL9, CXCL10,CXCL13

– Metaloproteinaza 9 jest wysoko co wpływa na brak integralności bariery krew-mózg
– Interferon gamma podany w sm zwiększa ilość rzutów (zwiększa go IL-18)
– IL-17 także jest obecna w SM – wydziela IL-9,21,22 oraz TNF alfa i GMCSF
– IL-23 wpływa na dojrzewanie Th17 i stymuluje do wytwarzania IL-17
– W SM jest także wysoki poziom limfocytów CD8+ które działają cytotoksycznie na oligodendrocyty i komórki nerwowe
– Wolne rodniki uszkadzają mitochondria w SM co powoduje deficyt energetyczny
– Uszkodzeniu ulegają oligodendrocyty, uwalniają one jony żelaza, co jeszcze bardziej zwiększa produkcję wolnych rodników
– Procesy naprawcze mielinizacji wpływ mają czynniki BDNF, NGF i IGF-1
– W 3 i 4 typie SM – remielinizacja neuronów jest szczątkowa lub jej brak
– W SM w 70% przypadków immunoglobulina G jest podwyższona
– Interferon beta pobudza CD8+ i hamuje CD4+ co ogranicza demielinizację, hamuje Th17, zmniejsza IL-12 i interferon gamma, zwieksza IL-4 i 10, zmniejsza przepuszczalność bariery krew-mózg
– Interferon beta może zwiększać częstotliwość rzutów w SM
– Octan glatirameru (GA) to 4 aminokwasy (l-glutamina, lizyna, alaina i tyrozyna) która chroni mózg przed zmniejszeniem, wyraźnie zmniejsza ilość rzutów. GA hamuje aktywację Th1 i pobudza Th2.
– Czynnik BDNF wzmaga wzrost komórek dendrycznych, zmniejsza uszkodzenia aksonów
– Przeciwciała monoklonalne w SM (leki) mogą powodować raka oraz istnieje ryzyko infekcji (podawane są dożylnie)
– Zablokowanie VCAM-1 ogranicza migrację limfocytów przez barierę krew-mózg i tym samym proces zapalny
– Pobudzenie enzymu/genu Nrf2 działa neuroprotekcyjnie /antyoksydacyjnie co wpływa hamująco na obumiera neuronów i astrocytów (syntetyk fumuran dimetylu)
– Choroba Devica – zapalenie nerwów wzrokowych i rdzenia kręgowego
– W 30% przypadków poprzedzona jest szczepieniem lub infekcją. Znacznie częściej występuje u kobiet niż u mężczyzn
– Często współwystępuje z miastenią, toczniem, Sjogrenem czy Sarkoidozą
– Wzrost ryzyka po porodzie
– Akwaporyna 4 (kanał wodny transportujący cząsteczki wody) która w oku i rdzeniu występuje obficie jest problemem w tej chorobie gdyż łączy się z przeciwciałami IgG, dochodzi do reakcji autoimmunologicznych

– AQP4-IgG aktywuje układ dopełniacza, zwiększa poziomy makrofagów i neutrofili oraz eozynofili poprzez stan zapalny. Uszkadzana jest bariera krew-mózg
– Choroba prowadzi do niedowładów, w tym braku kontroli nad zwieraczem, nawet do porażenia układu oddechowego i śmierci
– Nieleczony Davic po pierwszych rzutach – 30-50% śmiertelności
– W 80% przypadków są zmiany w mózgu, tam gdzie najwięcej jest akwaporyny 4 czyli w podwzgórzu i pniu mózgu
– Sugeruje się że możliwe że dożylna IgG miałaby właściwości terapeutyczne w tej chorobie
– Interferon B i octan glatirameru może powodować wzrost przeciwciał AQP-IgG
– Zespół Guillaina-Barrego – atak układu odpornościowego na komórki Schwanna lub mielinę nerwu lub oba elementów.
– Podejrzana jest infekcja campylobacter jejuni
– Występuje reakcja krzyżowa przeciw gangliozydom a infekcją
– Reakcja krzyżowa może zachodzić też między przeciwciałami przeciwko CMV
– Jest nadmiar interferonu gamma i metaloproteinaz i cytokin zapalnych. Układ dopełniacza jest aktywowany
– GBS możę być poprzedzone zabiegiem, transfuzją, leczeniem gangliozydami, ciążą i porodem, lekami (Kaptopryl, amitrypylina, zymeldina), znieczuleniem nadtwardówkowym
– Infekcje górnych dróg oddechowych i przewodu pokarmowego występują w 75% przypadków
– Najczęściej wykrywa się u tych ludzi mykoplazmę pneumoniae, EBV, c.jejuni, CMV
– LPS (lipopolisacharyd) na powierzchni c.jejuni wykazuje molekularną mimikrę z cząsteczkami gangliozydów
– Po zakończeniu choroby, nawroty mogą wystąpić po szczepieniu, infekcji czy też leczeniu steroidami
– Często występuje sztywność karku, ból w okolicy między łopatkami bądź piersiowo-lędzwiowej. Często pierwszymi objawami są parestezje czy drętwienia
– Kiedy dochodzi do niedowładów wpierw kończyny dolne, potem górne
– Trudności z połykaniem = stan zapalny nerwu błędnego
– Mogą występować wzrosty jak i nagłe spadki ciśnienia krwii, niepokój, splątanie, pobudzenie, zatrzymanie moczu i kału(zaparcia)
– W krwi często obecne są przeciwciała antyGT1a i antyGM16
– Możliwe, że GBS poprzedza infekcja influenzae haemphilins
– Immunoglobuliny pomagają
– Inhibitory COX-2 pomagają, zmniejszają zmiany histopatologiczne w nerwie kulszowym. Cyklooksygenaza bierze udział w demielinizacji
– BDNF i LIF(leukemia inhibitory factor) nie pomagają w tej chorobie
– Zespół Millera Fishera to odmiana GBS
– CIDP(przewlekła zapalna poliradikuloneuropatia demielinizacyjna) – poprawa następuje po immunoglobulinach
– Cukrzyca predysponuje do CIDP
– IVG dawkuje się 2g/kg i podtrzymująco 0.5kg/kg /2tyg. 1-2g.kg co 3-4tg.
– Przeciwskazaniem do dożylnej immunoglobuliny G jest niska IgA (ryzyko anafilaksji), zakrzepy (choroba naczyń)

– W wieloogniskowej neuropatii ruchowej dochodzi najczęściej do upośledzenia mięśni dłoni(siły), fascykulacje mięśni występują w 50% przypadków
– W MMN (wieloogniskowa neuropatia ruchowa) obecność przeciwciał w krwii anty-GM1 stwierdza się w 20-80% przypadków
– GM1 bierze udział w stabilizacji okolicy węzłów nerwów i zakotwiczenia kanałów potasowych i sodowych. Niezbędne jest to w prawidłowym przewodzeniu imuplsów w nerwach. Tutaj też działają immunoglobuliny
– IV IgG podaje się 2g/kg przez 2-5dni i później podtrzymuje
– Podawanie wyższych od standardowych dawek na wczesnym etapie może zahamować uszkodzenia aksonów
– Alternatywa do dożylnej IV IgG to podskórne immunoglobuliny, 2-3x w tygodniu 13-51gram. Sterydy i plazmafereza są nieskuteczne w wieloogniskowej neuropatii ruchowej (mogą zaostrzać stan chorobowy).
– W Miastenii Gravis występują przeciwciałą przeciwko receptorom acetylocholinowym
– Miastenia związana jest z HLA B8 i DRW3
– Przeciwciała anty Ach w Miasteni zmniejszają ilość receptorów lub je degradują czy też blokują
– Osoby z Miastenią mają 3x mniej receptorów Ach niż zdrowe osoby
– Plazmofereza i immunosupresja obniżają poziomy przeciwciał antyAch
– Limfocyty T związane z receptorem IL-2 są wysoko, limfocyty B w normie
– W grasicy osób z miastenią powstają bardziej czynne limfocyty T i B niż są w krwii obwodowej, ponadto obecne są guzy w tym organie, w 60-70% przechodzi w przerost grasicy (z wiekiem ten organ ogólnie zanika)
– W 20% przypadów współwystępuje z toczniem, RZS, Graves-Basedowem, cukrzycą czy łuszczycą
– Często występuje antygen HCA B8 i DRW3
– Stwierdza się przeciwciała przeciwko kinazie tyrozynowej (antyMUSK) specyficznej dla męśni
-W antyMusk(Miasteni) nie ma problemów z grasicą. Znacznie częściej na tą chorobę zapadają kobiety (zatem podejrzenia powinny paść na testosteron/estrogen/progesteron)
– Musk-MG moze stwarzać problem oligostatyczny gdyż naśladuje SLA(stwardnienie zanikowe boczne)
– Duszności są bardzo popularne w tej chorobie
– Leki cholinergiczne pogarszają sprawę
– Przeciwciała antyLRP4 powodują Miastenię w 100% przypadków. W tej grupie leki cholinergiczne pomagają tak samo jak immunosupresja
– Przeciwciałą LRP4 wykrywane są w płynie móżgowo-rdzeniowym u osób z SLA (prawie 25% przypadków)
– Jest grupa osób z miastenią ale bez przeciwciał antyLRP4,MUSK czy Ach
– Cały czas trwają badania nad innymi przeciwciałami atakującymi układ nerwowo-mięśniowy
– Nużliwość mięśni jest większa po pracy lub wieczorem (podstawowy objaw Miastenii)
– Osłąbienie kącików ust nazywa się objawem Giacondy. Pojawia się problem z przełykaniem i mówieniem (nerw błędny?)
– Problemy z piciem płynów. Płyny mogą wracać nosem, opada rzuchwa, która pacjenci podpierają dłonią. Może dojść do osłabienia mięśni grzbietu
– Remisje zdarzają się w 15% przypadków (miana przeciwciał Ach pozostają takie same)
– 4 postacie Miasteni, oczna,łagodna(dobra odpowiedź na leki cholinergiczne), ciężka, ciężka postępująca
– Zaostrzenia Miasteni mogą być na antybiotykach streptomycynie, neomycynie, erytromycynie, gantomycynie, lekach arytmicznych, beta blokerach, botulinie, statynach czy też po narkozie która może wywołać miastenię
– Wczesna miastenia dotyka głównie kobiet
– W 50% przypadków obecne są przeciwciała przeciwko Tytynie i RyR
– Inny podział podgrup miasteni obejmuje 5 typów od osłabienia mięsni ocznych do osłabienia wszystkich innych oprócz ocznych)
– Zaburzenia transmisji nerwowo-mięśniowej występują w przypadku zatruciem pestycydami
– W miasteni występuje przeważnie prawidłowa ilość acetylocholiny ale nie może się ona związać z receptorami (które są zablokowane) acetylocholiny
– Przeciwciała acetylocholiny obniżają się w immunosupresji
– Miano AchR jest podniesione u prawie wszystkich osób z grasiczakami
– Przeciwciała Ach obniżają się po immunosupresji
– Badanie NMR pozwala wykryć grasiczaka w Miasteni
– Także i tutaj stosuje się immunoglobuliny dożylne G
– Stosuje się także blokery acetylocholinesterazy – wiąże to acetylocholinę na dłużej z receptorem
– Plazmafereza usuwa cząsteczki patologiczne, kompleksy immunologiczne, antygeny, krioglobuliny, endotoksyny i przeciwciała blokujące AChR
– Miastenia noworodków – ok.10% przypadków, jeśli matka ma miastenię to ryzyko wynosi 70% przy narodzinach kolejnych dzieci
– LEMS – zespół miasteniczny Lamberta – Eatona – nie ma przeciwciał antyAch. Są 2 odmiany – jedna związana z nowotworem raka płuca, druga o podłożu autoimmunologicznym.
– Wysokie miano przeciwko kanałom wapniowym potwierdza LEMS
– Miopatia zapalna – marker diagnostyczny – MHC/CD8
– Mipatia – zapalenie skórno mięśniowe – następuje aktywacja dopełniacza, która powoduje zmiany vasculitis. Pojawiają się zmiany struktury włókien mięśniowych spowodowane niedokrwieniem i aktywują C3b,C4b, C5b-9 kompleksu MAC układu dopełniacza
– Kompleks MAC gromadzi się wokół ścian wewnątrzmięśniowych naczyń włosowatych. Doprowadza on do zmniejszenia się liczby naczyń krwionośnych (ich rozpadu). Dochodzi do zaniku włókien mięśniowych.
– Wykrywa się złogi dopełniacza w lub wokół śródbłonka naczyń krwionośnych
– Do mięśni migrują komórki CD4+, CD8+ i makrofagi
– Na zanikłych włóknach mięśniowych stwierdza się obecność MHC-1, NCAM, STAT-1, kotepsynyy, TGF-b co sugeruje, że miejscowy stan zapalny regulowany jest przez interferon
– Nacieki limfocytarne składają się z komórek B, CD4 czy dendrycznych. Mogą być one źródłem wydzielania interferonu alfa
– Wykazano, że dochodzi do nadprodukcji interferonu alfa i beta
– Aktywacja dopełniacza zaburza regulację cytokin, chemoin, cząsteczek adhezyjnych, a to ułątwia migrację komórek T i B
– Złogi dopełniacza łatwo są wydzielane przez wydzielanie interferonu beta i gamma, cytokin, chemokin i czynników transkrypcyjnych
– Istnieje znacznie wyższe ryzyko nowotworów, charakterystyczne są przykurcze stawów łokciowych, biodrowych, skokowych czy kolanowych. W ciężkich przypadkach odruchy fizjologiczne nie są zachowane

– Czasami tachykardia, zaburzenia rytmu, zapalenia mięśna serca, obrzęki stawów, owrzodzenia
– Wapnica (odkładanie się złogów w tkance podskórnej) raczej tylko występuje u dzieci
– Stwierdza się podwyższoną CK oraz innych enzymów mięśniowych
– Czasami występują przeciwciała anty_Mi2 przeciw NURD czy też przeciwciała anty-Jo-1, przeciwciała antyMDA5, NXP-2
– W zapaleniu wielomięśniowym mięśnie uszkadzają komórki CD8+, atakują mięśnie w któych występuje antygen MHC-1 (normalnie tam nie występuje)
– Prawie połowa z tych atakujących limfocytów CD8+ wykazuje HLA-DR+
– MHC-1 jest nadmiernie aktywowana
– Poziomy czynników zapalnych we wszystkich 3 miopatiach zmienia się
– Mowa o IL-1,2,5,TNF alfa,TGF-b,MCP-1,MIP-alfa1,IP-10.
– Komórki T uwalniają perforynę która powoduje martwicę mięśni (autoagresja)
– Wykazano zwiększone poziomy NOS przez co zwiększamy poziom tlenku azotu który może powodować stres oksydacyjny i uszkadzać włókna
– Podwyższony jest także poziom metaloproteinaz
– Interferon gamma, IL-1 i TNF alfa działają także miocytotoksycznie
– W przypadku obecności przeciwciał przeciw syntetazom dochodzi do zwłóknienia płuc, objawu Raynauda, 'ręki mechanika’
– Zaatakowane włókna mięśniowe prezentują ekspresję kompleksu zgodności tkankowej HLA I
– Statyny mogą wywołać szerokie spektrum mialgii i miopati martwiczych. Nie bez znaczenia są także geny SLCO13 kodujący białko transportujące statynę wątrobową czy geny detoksu i metabolizmu statyn – CYP2D6 i CYP3A5
– Stosowanie statyn z flukonazolem, ketokonazolem, antybiotykami powoduje interakcje i objawy mięśniowe
– W mięśniach stwierdza się złogi kompleksu ataku błony MAC
– Wtrętowe zapalenie mięśni – komórki CD8 atakują mięśnie i antygen MHC-1
– Problemem jest też amyloid beta i cytokiny zapalne. IBM(wtrętowe zapalenie mięśni) często występuje z innymi chorobami immunologicznymi. Występuje też po intekcjach wirusowych (retrowirusowych)
– Występuje zanik i osłabienie mięśni ud, zginaczy grzbietowych stóp, mięśni przedramion. Dysfagia występuje w 60% przypadków powodująca zaburzenia przełyku
– Struktury białkowe wtrętów są pdoobne do amyloidu beta
– W tym typie miopati polecają 50tyś jednostek D3 tygodniowo w celu zmniejszenia ryzyka osteoporozy przy braniu steroidów
– Są 4 podtypy HIV – A,B,C i D
– Receptorem komórkowym dla glikoproteiny GP120 jest CD4+ (CD4+ to limfocyty pomocnicze w tym mikroglej/monocyty i mikroglej)
– HIV – zakażone zostają także astrocyty czy nerki
– Wirus bytuje też w fazie latentnej
– Przeciwciała w HIV pojawiają się po 3 miesiącach
– Dochodzi do rozszczelnienia bariery jelitowej (dochodzi do apoptozy enterocytów)
– Dochodzi do zaburzenia stosunku CD4Th17 do Limfocytów Treg
– Im wyższa wartość CD8 na początku zakażenia tym wyższa wartość wiremii późnej
– Chemokiny MIP-1alfa1 i 2 blokują zakażenie
– Niski interferon gamma = niepowodzenie w zahamowaniu replikacji tak samo jak wysoka cytokina IL-10
– Niskie CD4+ w czasie infekcji sprzyja nowotworzeniu-chłoniaki mózgu, mięsaki Kaposiego, rak szyjki macicy
– Leczenie interferonami(ART) zwiększa CD4+ wszędzie poza układem pokarmowym
– Na początku dominują CD4 z subpopulacji Th1 a później z Th2. Zmniejsza się suppresorowe oddziaływanie na wirusa i aktywacji ulegają limfocyty B
– Zakażone są komórki NK, progenitorowe komórki homeopatyczne, komórki OUN i układu pokarmowego (w błonie śluzowej ukł.pokarmowego jest 5x więcej zakażonych komórek niż we krwi obwodowej)
– HIV jest także w astrocytach
– Homogyzota genu CKRS(delta 32) = naturalna oporność na zakażenia HIV czy też podwójna kopia genu CCL3L1 kodującego MIP-alfa1
– W czasie zajęcia OUN dochodzi do neuropatii czy też encefalopatii. Poprawia się zmęczenie, gorączka, zapalenie gardła, potliwość nocna, limfadenopatia, zapalenie opon mózgowo-rdzeniowych, wysypki, biegunki
– Zbliżający się wczesny okres objawowy zakażenia utajonego to takie objawy jak półpasiec, pleśniawki, zapalenie mieszków włosowych, cytopenia, neuropatia, chudnięcie


– Infekowane są makrofagi wyposażone w cząsteczkę CD4+ i koreceptory CCR5 i CCR3 zlokalizowane w gleju okołonaczyniowym
– ART(terapia antywirusowa) zmniejsza obciążenie wirusem o tropiźmie typu RS natomiast słabo działa na X4. Podczas tej terapii stan zapalny ośrodkowego układu nerwowego zmienia umiejscowienie. Bez ART jest w zwojach podstawy mózgu w trakcie ART w hipokampie.
– Białka Tat,nef i vpr wirusa indukują nacieki komórek odpornościowych
– Pobudzone są cytokiny prozapalne TNF alfa, IL-6, IL-1b i GM-CSF, kwas chinolowy i eikozanoidy, czynnik aktywacji płytek krwii
– Często dochodzi do współinfekcji – CMV, kryptokoki i toksoplazmoza
– Zaburzenia neurokognitywne występują przy niskiej ilości CD4+, są duże zmiany w naczyniach krążenia mózgowego, pobudzony mikroglej, mózg starzeje się szybciej o 15-20lat
– ART nie hamuje białek zapalnych wirusa. Forma latentna może dalej uwalniać te struktury genomu które mają działanie neurotoksyczne
– Naśladuje stwardnienie rozsiane czy też zespół Guillaina Barrego – podaje się wtedy immunoglobuliny
– Palenie stóp lub problemy z chodzeniem = neuropatia obwodowa – problem z chodem, sztywności, drętwienia mięśni. W zaawansowanym stadium nietrzymanie moczu i stolca. Zaleca się ART, fizykoterapię, metioninę
– Wirus JC wywołuje leukocefalopatię wieloogniskową. Zakażenie przez drogi oddechowe jest bezobjawowe. W okresie utajenia wirus jest w nerkach i limfocytach
– Większość osób z tą infekcją ma limfocyty CD4+ < 100 komórek/mm3
– HIV i jego białko (tat) najprawdopodobniej uaktywnia wirusa JC który później może przenikać przez barierę krew-móżg
– Podstawowe objawy – otępienie, ataksja, padaczka, niedowłady nerwów czaszkowych, zaburzenia widzenia, brak gorączki
– Kryptokokoza ( zakażenia cryptococcus neoformans) – zajęcie mózgu = rozlane bóle głowy, wymioty, splątanie, zaburzenia psychiczne, CD4+ <100 stosuje się amfoterycynę liposomalną z flucytozyną czy też z intrakonazolem
– Neurotoksoplazmoza = pojawienie się mikroglejowych guzków, zapalenia drobnych naczyń, zmiany martwicze, nacieki wokół naczyń krwionośnych
– Może dojść do psychozy, zaburzeń czucia i równowagi, padaczki
– Co ciekawe w toksoplazmozie stosuje się miedzy innymi kwas foliowy
– Biopsja chłoniaka mózgu = 4% śmiertelności
– Chłoniak może być pomylony z kryptokokozą, kiłą lub toksoplazmozą
– Pochodne dwudezoksy-NRT1 w 30% przypadków działają neurotoksycznie powodując piekące bóle stóp i dłoni, mrowienie, skurcze mięśni, zaburzenia temp. i bólu. Może być związana z toksycznym uszkodzeniem mitochondriów (podwyższony poziom mleczanów)(stwierdza się to w biopsji).
– W zespole osłabienia nerwowo-mięśniowego podwyższony jest poziom mleczanów
– Lekooporność wirusa dochodi do 17%
– W Europie ilość zakażonych kleszczy to nawet 45%
– Błona komórkowa krętka boreliozy jest trójwarstwowa i posiada cechy bakterii gram dodatnich i ujemnych
– Białka CRASP krętka nie są wrażliwe na komplement układu dopełniacza. Krętek wiąże białka regulatorowe (służą mu do tego białka CRASP 1,2,3,4 i 5) i nie dopuszcza do aktywacji klasycznej i alternatywnej drogi układu dopełniacza
– Białka te łączą się z czynnikiem H i czynnikiem FHZ-1 oraz rekonektyną blokując ich czynności regulatorowe. Również białka powierzchniowe z grupy Erps (OspE, OspF, p21, ErpA, EsP) blokują białka regulatorowe komplementu
– Utrzymanie krętków w postaci spiralnej (ze ścianą komórkową) wymaga w ich otoczeniu kwasów tłuszczowych i lipidów. Krętek w obecności antybiotyków Beta laktamowych może przejść w formę cysty
– Krętek wytwarzając blebs zawierający xyribomcleric acid aktywuje limfocyty B. Sugeruje się, że blebs możę być wytworzony na skutek zmiany pH środowiska czy też obecności antybiotyków. Blebs przykrywając geny powierzchniowe krętka może go chronić przed działaniem układu odpornościowego
– Przeciwciała ukł.odpornościowego często nie docierają do białek powierzchniowych gdyż np.białko błonowe p66 zasłanianie jest lipoproteina OspA stąd przeciwciała i proteazy nie są w stanie uszkodzić komórki bakterii.
– Krętek nie potrzebuje żelaza do przeżycia
– Limfocyty CD4,8 i 25 są produkowane intensywniej niż zwykle tak samo jak interferon gamma i IL-4
– Wykazano, że odpowiedź immunologiczna szczepu B.afzelii jest najmocniejsza z 3 szczepów występujących w Europie
– Boreliozowe zapalenie stawów to najwyższe stężenie cytokin zapalnych IL-12 i 15 a neuroborelioza IL-6 i interferonu gamma
– Peroksydacja lipidów może zachodzić na skutek nadmiernego stresu oksydacyjnego. Powoduje to zaburzenia transportu przez błony i aktywności łańcucha oddechowego.
– W boreliozie następuje wzmożona peroksydacja lipidów
– Krętek posiada na sobie flagellę (witki) dzięki którym się porusza
– Zanikowe zapalenie skóry to jeden z objawów boreliozy
– Rumień to pewny objaw infekcji krętkiem boreliozy
– Zapalenie skóry to przeważnie b.afzelii ale zanikowe zapalenie skóry może też wywoływać sensu stricto i garinii
– Zapalenie mięśnia sercowego może wystąpić po tygodniu lub nawet pół roku
– Zapalenie stawów (najczęściej kolanowe) mogą wystąpić z zapaleniami ścięgien i przyczepów mięśni
– Predyspozycje do stanów zapalnych stawów mają osoby z HLA DR2 i 4
– Obecna w łonie maziowej LFA-1 może odpowiadać za mimikrę molekularną krętka z białkiem OspA utrzymując stan zapalny po eliminacji infekcji
– Najczęstszym problemem ocznym jest zapalenie spojówek, z kolei zapalenie twardówki powoduje dyskomfort i bolesność przy dotyku oraz łzawienie
– Porażenie nerwu twarzowego może powodować zapalenie rogówki
– Przypuszcza się reakcje krzyżowe między flageliną krętka a antygenami neuronowymi
– Uszkodzenie bariery krew-mózg może wystapić tylko przez żywe krętki
– W układzie nerwowym krętki łączą się z siarczanem chondroityny i siarczanem heparyny

– Przebycie zapalenia opon mózgowych powoduje w 68% przypadków zaburzenia psychiczne
– Często współwystępuje z zespołem niespokojnych nóg, fibromialgią, zepołem przewlekłego zmęczenia, zespołem nadwrażliwości chemicznej, IBS, ostrymi psychozami, zaburzeniami odżywiania jak i też z napadami paniki
– Reakcje krzyżowe mogą być z krętkiem bladym czy wirusem EBV
– Badania wykonuje się 6-8tyg.po zakażeniu
– Istotne diagnostycznie są białka OspC, VISE, BBA36, JBO323, CRASP-3, pG
– Neuroborelioza w rezonansie magnetycznym po podaniu kontrakstu może być mimetykiem stwardnienia rozsianego lub rozlanego zapalenia mózgu i rdzenia
– Szpiczak współwystępuje w 50% z neuropatią (odmiana osteosklerotyczna)
– Zespół paranowotworowy cechuje obecność przeciwciał anty-Hu, anty-Yo, anty-CV2, AntyRi, antyMa2, antyfifizyna
– Przeciwciała ANNA-1 często wskazują na raka płuca czy gruczołu krokowego
– Przeciwciała anty-Yo często wskazują na raka jajnika lub piersi lub sutka
– Zapalenie układu limbicznego, mózgu, rdzenia, zespół Lamberta eatona
– ANNA-2 rak piersi i płuc
– Anty amfifizyna – występują w zespole sztywnego człowieka oraz raka płuc, jajnika
– ANNA-3 – rak płuc, przełyku
– Anty-GAD – zespół sztywnego człowieka i rak piersi
– Anty-VGKC (przeciw kanałom potasowym) – grasiczak, rak płuc
– anty CASPR2 i anty-LGI-1 rak płuc lub piersi
– anty VGCC (NMDA i receptory glutaminowe) – pierwotniak płuca
– Anty AMPAR – rak płuc i grasicy
– anty GABA R (receptor anty GABA) – rak płuc
– Anty mGluR1 – ziarnica złosliwa
– Zapalenie układu libicznego powoduje amnezję, słabą pamięć krótkotrwałą, dezorientację, splątanie, pobudzenie, psychozę (omamy, padaczkę)
– Zaburzenia ruchów gałek ocznych we wszystkich kierunkach to może być neuroblastoma
– Zapalenie skórno-mięśniowe stwierdza się nawdrażliwość na promieniowanie UV. Może dojść do zaniku mięśni, kinaza kreatynowa CPK jest zwiększona. W Przebiegu tego schorzenia występuje wiele typów nowotworów (praktycznie wszystkich)
– Nadmierne pobudzenie układu odpornościowego zwiększa ryzyko udaru niedokrwinnego
– 20% udarów to zakrzepica naczyń tętniczych
– Sugeruje się, że miażdżyca może być na tle autoimmunologicznym w której antygenem może być białko szoku termicznego Hsp60
– Zatorowość sercowa i migotanie przedsionków to 1/3 przypadków udarów
– W udarze dochodząc do niedotlenienia zostaje ograniczona biodostępność tlenku azotu który zmniejsza agregację płytek krwi i rozszerza naczynia, zwiększa się ekspresja selektyny P i cząsteczek adhezyjnych, zwiększa się czynnik VEGF. Cytokin zapalne, czynniki proteolityczne zwiększają wtedy przepuszczalność bariery krew-mózg.
– Astroglej uwalnia glutaminian. Stymuluje on receptory NMDA i AMPA co powoduje otwarcie kanałów wapniowych i sodowych. Jony wapnia napływając do komórki aktywują apoptozę i proces zapalny. Pobudzają produkcję kwasu arachidonowego i kaspazy. Martwica neuronów powoduje aktwację mikrogleju
– Niedokrwienie aktywuje receptory purenergiczne P2X4, P2X7 i P2Y6 w komórkach mikrogleju
– P2X7 aktywuje inflamasomy (komleks NLRP3) co aktywuje syntezę IL-1b, IL-18
– Aktywowany mikroglej wydziela TGF-beta, który pobudza Treg
– IL-1b nasila wpływ wapnia do komórki zwiększając cytotoksyczność
– Niższy poziom IL-1 obniża strefę udaru
– Nadmiernie podwyższone Treg wpływają na mikrokrążenie mózgowe, ich obniżenie zmniejsza zakrzepy i przywraca perfuzje. Sugeruje się, że podczas udaru i chwile po pełnią one funkcje protekcyjną
– Limfocyty B aktywują układ dopełniacza
– Udar powoduje aktywację współczulnego układu autonomicznego (nerwowego)
– Stymulacja układu współczczulnego zmniejsza aktywację komórek iNKT oraz interferonu gamma
– Stymulacja nerwu błędnego zmniejsza TNF alfa wytwarzaną przez makrofagi
– Komórki mikrogleju typu M2 i limfocyty Treg wydzielają IL-10 i TGF-beta
– Mikroglej pobudza wydzielanie BDNF
– VEGF, IL-8, TGF-b i MMP-9 wydzielane są w przypadku niedokrwienia przez komórki tuczne, monocyty i mikroglej
– Limfocyty CD4+ mogą wpływać na syntezę BDNF przez astrocyty
– MBG1 to cząsteczka która na wczesnym etapie udaru działa prozapalnie, później pomaga w formowaniu nowych synaps i komórek śródbłonka
– Limfocyty Th1 uwalniając semaforynę 4A sprzyjają wydłużaniu neurytów, komórki CD8+ działają przeciwnie
– Trombina przekształca nieakywną metaloproteinazę 9 (proMMP9) w aktywną, postęgując uszkodzenie bariery krew-mózg oraz promuje formowanie blizn co sprzyja występowaniu padaczki
– Niskie dawki trombiny powodują stymulację pokrwotocznej neurogenezy
– C3a i C5a (komponenty dopełniacza) aktywują mikroglej i komórki tuczne
– Metaloproteinazy rozkładają białka połączeń ścisłych (okludynę i klaudynę 5) co zwiększa przepuszczalność bariery krew-mózg
– U ludzi z krwotokiem podpajęczynówkowym dochodzi do spadku CD4+ i CD8+ oraz mniejszego wydzielania TNF alfa, IFN gamma i IL-2 przez monocyty i limfocyty
– Nogo-A – białko hamujące regenerację aksonów i wydłużanie dendrytów po udarze
– Minocyklina(antybiotyk) – działanie neuroprotekcyjne
– Połowa osób z padaczką ma niską immunoglobulinę IgA we krwii (może to być związane z antygenem HHLA-B5 i HLA-A2
– Zaburzenia alergiczne występują w 50% przypadków oraz duże ilości przeciwciał przeciwko różnym bakteriom, niski poziom komórek NK, niski poziom limfocytów T4 a wysoki T8
– W płynie mózgowo-rdzeniowym wykazano wzrost ICAM1 i VCAM1 oraz uszkodzenia bariery krew-mózg
– Leki przeciwpadaczkowe (Fenytoina, fenobarbitol i pirmidon) powodują głębokie niedobory IgA. karbamazepina podwyższa IgG i IgA
– Moga występować przeciwciała IgG i IgM przeciwko monosialogangliozydom (GM1)  w surowicy padaczkowców
– Występują także przeciwciała przeciwko kanałom potasowym napięciowo zależnym VGKC i dekarboksylazie kwasu glutaminowego GAD czy też receptorom NMDA oraz antygenowi Hu
– Przeciwciała przeciwko tarczycy mogą mieć związek z padaczką płata skroniowego
– Choroby autoimmunologiczne zwiększają ryzyko padaczki
– Padaczke mogą wywoływać antygeny Ma2, amfifizyna czy też antygeny NR1, LGI1, Caspr2, GABA(B), AMPAR(Glur1/2) mGluR5, DPPX, GAD
– Gamma globuliny powodują poprawę w leczeniu napadów drgawkowych
– Zapalenie zwojów podstawy mózgu w tle autoimmunologicznym – pląsawica Sydenhama
– PANDAS – dziecięce zaburzenia neuropsychiatryczne o podłożu autoimmunologicznym
– Zapalenie zwojów podstawy możę być wywołane przez toczeń trzewny, autoimmunologiczne zapalenie tarczycy, chorobę Beheta i inne (np. przeciwciała anty DR, anty-NMDA, anty CRMP5)
– Uszkodzenie jąder podstawy to zaburzenia ruchowe takie jak pląsawica, Parkinson, drżenie, dystonia, tiki, mioklonie, zaburzenia neuropsychiatryczne, zaburzenia obsesyjno kompulsywne, zaburzenia nastroju, zaburzenia kognitywne
Paciorkowiec beta hemolizujący z grupy A zawiera w swojej ścianie komórkowej białko M odpowiedzialne za jego wirulencję. Białko to wywołuje wstrzas toksyczny i hamuje aktywację dopełniacza i opsonizację bakterii przez C3b co zapobiega fagocytozie przez granulocyty
– Przeciwciała przeciwko białkom M wiążą się krzyżowo z miocyną, tropomizyną, lamininą powodując uszkodzenie mięśnia sercowego i zastawek


– Wykrywa się także przeciwciała przeciwko wimentynie i keratynie odpowiadające za stan zapalny stawów i skóry
– W pląsawicy jest nadmiernie uwalnianie dopaminy i innych neurotransmiterów, obniżony poziom acetylocholiny i GABA
– Pląsawica występuje zwykle 1-6 miesięcy po infekcji paciorkowcowej
– W pląsawicy najczęstrze problemy to zaburzenia gałek ocznych, tiki, dyzartrie, obniżone napięcie mięśniowe, czasami hipotonia, niepokój, chwiejność emocjonalna, dziwaczne zachowania, zaburzenia uwagi, OCD, depresja
– 60% osób z pląsawicą rozwinie w sobie w przyszłości chorobę reumatyczną
– Pląsawica powoduje poronienia
– Środki antykoncepcyjne powodują nawrót pląsawicy
PANDAS – zajęty OUN, pląsawica = choroba wielonarządowa
– I w PANDAS i w pląsawicy wykrywa się występowanie w limfocytach B markera D8/17
– Potworniak jajnika związany jest z przeciwciałami anty NMDA
– Przeciwciała DR2 mogą stanowić biomarker zaburzeń ruchowo-psychicznych
– Przeciwciała DR1 i DR2 stwierdzono u osób z PANDAS i pląsawicy oraz części osób z zespołem Touretta
– Schizofrenia to przeważnie zaburzenie układu cytokin i zakażenia wirusowe
– Występują przeciwciała przeciwko receptorom dopaminy D2 oraz receptorów nikotynowych dla acetylocholiny. Stwierdza się też wysokie miano przeciwciał przeciwko serotonine a niższe przeciwko dopaminie, przeciwciała przeciwko GAD co zmniejsza poziom GABA, czy też przeciwciała przeciwko NMDA czy receptorom muskarynowym M1 i M2 lub nikotynowym alfa 7, przeciwciała anty VGKC, anty LGI1, anty CASPR2
– Schizofrenia zmniejsza ryzyko RZS
– Polimorfizm genu prolaktyny (przewaga alleli G) występuje w schizofreni, RZS, toczniu
– Notuje się podwyższone poziomy IL-1b w tym zaburzenia oraz polimorfizm IL-1
– Schizofrenia ma związek z polimorfizmem genu IL-1
– IL-2 ma liczne receptory w hipokampie i pobudza przekaźnictwo dopaminergiczne
– IL-2 jest podwyższone u schizofreników i rośnie w czasie zaburzeń psychicznych. To samo z IL-6 – podwyższona w surowicy i mózgu
– Schizofrenia ma tez związek z TNF alfa – polimorfizmem
– Sugeruje sie aby używać IL-2 jako markera schizofreni lekoopornej
– Za pogorszenie funkcji poznawczych w schizofrenii odpowiada IL-6 i wysokie CRP
– Sugeruje się nierównowagę układu immunolgicznego – Th1 lub Th2 jak i również pobudzenie mikrogleju
– W schizofreni nie występuje lub jest osłabiona reakcja flush na niacynę, sugeruje się to jako test na schizofrenię (PD:problem z metylacją?)
– Takiego problemu nie ma u osób zdrowych
– Infekcja wirusem grypy w ciąży zwiększa ryzyko schizofreni u dziecka
– Przeciwciała przeciwko wirusowi grypy reagują krzyżowo z białkami neuronów płodu
– Wirus różyczki i toksoplazmoza w ciąży zwiększają ryzyko schizofreni
– Nadczynność dopaminergiczna może wystąpić już po podaniu RNA z zewnątrz
– Zwiększony poziom przeciwciał CMV, EBV, wir opryszczki i odry zauważono u schizofreników
– Toksoplazmoza i infekcja kiłą poza ciążą zwiększa ryzyko schizofrenii
– Podejrzewa się też wirusa Borna który powoduje nadczynność układu dopaminergicznego i zaburzenia behawioralne i poznawcze
– Psychotropy hamują IL-2, IL-6 i TNF alfa i zwiększają IL-10 (poza klazepiną)
– Blokery COX-2 pomagają oraz n-acetylocysteina(NAC)
– Cytokiny zapalne przyczyniają się do depresji, zwłaszcza IL-1
– Interferony syntetyczne doprowadzają do depresji
– W depresji zaburzona jest serotonina i jej transportery
– Epizody mani można zredukować/cofnąć poprzez wzrost IL-1
– W chorobach efektywnych podwyższone są miana ANA i ACA
– W depresji stwierdza się przeciwciała przeciwko serotoninie
– Przewlekła depresja może doprowadzić do Alzheimera
– W chorobach afektywnych 3x częściej występują przeciwciała przeciwko NMDA
– Wysoki poziom przeciwciał przeci gliadynie zwiększa ryzyko depresji
– anty-TPO jak wyżej
– W chorobie dwubiegunowej jest wzrost częstotliwości występowania przeciwko aTPO
– Zaburzenia kanałów potasowych związane jest z chorobami psychicznymi
– Wirus Borna może przyczyniać się do chorób afektywnych tak samo jak parowirus B19 (może też on wywoływać autoimmunologię tarczycy
– Lit działa dobrze na wirusa opryszczki
– Lit zwiększa produkcję immunoglobulin jak i NK (przy bardzo długim stosowaniu), zmniejsza IL-6 i wydzielanie kortyzolu

 

 

Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!

Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic

Obserwuj mnie na instagramie www.instagram.com/premyslaw84

Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”

Podziel się tym artykulem na facebooku:

Choroba Biotoksyczna – diagnoza i efektywne leczenie – konferencja cz.1

Choroba Biotoksyczna – diagnoza i efektywne leczenie – to konferencja, która odbyła się już dobre pare lat temu – jednak to co wtedy już wiedziano i praktykowano na temat pleśni w Polsce będzie stosowane moim skromnym zadniem za ok.30lat(i to nie w publicznej służbie zdrowia). Konferencja odbyła się w Santa Rosa pod koniec 2011roku. Wystąpił na niej człowiek który specjalizuje się praktycznie tylko i wyłącznie w leczeniu pleśni,grzybic i boreliozy – Dr.Shoemaker, którego doświadczenia i teorię potwierdził jakby nie patrzeć – dr.Neil Nathan. Zdecydowanie polecam przeczytać – sam mogę potwierdzić wiele z tych obserwacji i faktów. Jest to część 1.

 

Dr. Shoemaker
– 92% osób z chorobą biotoksynową mają pozytywne testy VCS. Test może być zrobiony online na survivingmold.com. Negatywny test VCS nie mówi o braku chroby, gdyż wyniki mogą być negatywnie ujemne.
– ADH(hormon antydiuretyczny i jego niedobór jest standardem w chorobie biotoksycznej. Miedy MSH jest nisko, ADH generalnie jest także nisko. Tak naprawdę kiedy MSH jest nisko, wiele rzeczy może pójść nie tak w ścieżce detoksu biotoksyn.
– Kiedy ADH jest problemem, tracisz wodę. Sól jest wtedy wyrzucana do skóry poprzez gruczoły potowe. Dr.Shoemaker zrobił testy wypacania chloru i zauważył, że kiedy ludzie doświadczają statycznego szoku, mają wysokie poziomy chlorków
– Sprawdzanie pleśni w powietrzu to najgłupsza rzecz o jakiej słyszałem w życiu
– MSH i VIP to peptydy regulatorowe. VIP jest obecnie dostępny w postaci spreju do nosa, który może być użyty po przejściu wszsytkich króków programu leczniczego.
– Nie będzie działał bez przeprowadzania wcześniejszych interwencji. MSH jeszcze nie jest dostępny. ADH to z kolei inny peptyd regulacyjny.
– Kiedy tracisz kontrolę nad stanem zapalnym, stan ten dziczeje. Jeśli stracisz nad nim kontrolę – rozjebie Cię. (PD: tłumaczenie niczym w polskich filmach).
– Nie kontrolowany stan zapalny może być oceniony poprzez sprawdzenie C4a, MMP-9 czy też TGF-b1.
– Obniżone MSH to kofaktór, który może prowadzić do MARCoNS, nosowych infekcji gronkowcem. MARCoNS aktywuje stan zapalny, może produkować biofilmy i biotoksyny.
– Cytokina TGF-b1 może być markerem autoimmunologi. Może prowadzić do zmian w tkance płucnej i symptomów astmapodobnych.
– Stan organizmu o którym mówi Dr.Shoemaker to nie problem mitochondrialny a problem z transportem tlenu, którego są niedobory.
– W 1999 Dr.Sam donta odkrył, że Borrelia wytwarza neurotoksyny. Shoemaker wyprobował wtedy cholestyryminę i zauważył, że pacjentom się po niej pogarsza. Cytokina zapalna TNF alfa wtedy wzrastała, MMP-9 także. Zaczeli wtedy używać Actos(PD:Pioglitazon – jest to lek używany w przypadku cukrzycy typu 2,pobudza on receptory PPAR gamma dzięki czemu obniża insulinooporność, zbija poziom glukozy we krwii i trójglicerydów, stymuluje wytwarzanie cholesterolu także nie dziwię się, że musi być podawany z cholestyrymina która ją obniża) w celu blokowania TNF alfa i MMP-9 – niestety blokowanie MMP-9 nie działało.
– Podziałało natomiast, kiedy używali diety bez amylozy razem z CSM i Actos.
– Test VCS zaczął być stosowany od 1998r. MSH i leptyny weszły w życie w 2000roku. MSH kontroluje cytokiny i stan zapalny. Wykrywanie kultur bakteryjnych z nosa oraz HLA-Dr zaczeło być stosowane / wykrywane w 2001r.
Sprawdzanie poziomó VEGF i MMP-9 od 2001, ADH/Osmo, ACTH/kortyzol i androgeny w 2002. Przeciwciała anty-gliadynie w 2003, przeciwciała anty-kardiolipinie w 2004. Białko dopełniacza C3a w 2004, C4a i VIP w 2005. ERMI w 2006, TGF-beta1 w 2008, VIP i CIRS (testowanie i pojęcie takie jak CIRS) w 2009. Komórki regulacyjne T CD4+CD25+ w 2010.
– Dr.James Lipton studiował MSH. Odkrył, że MSH działa anty Candida i przeciwko gronkowcowi w nosie. Prędzej czy później MSH będzie dostępne,ale na chwilę obecną nie jest.
– Gronkowca znajdowano nawet w usuniętych zębach
– Istnieją 54 haplotypy testu HLA – 15-6-51, 16-5-51, 11-3-52B i 4-3-53 to te, które mają wpływ na ludzi z boreliozą. Tacy ludzi nie wracają do zdrowia tylko na antybiotykoterapi.
– Czynnik VEGF stymuluje wzrost naczyń krwionośnych. Jeśli masz niewydolność serca, VEGF będzie nisko, ale nie zawsze.
– Jeśli wiesz, jakie są poziomy MSH i ACTH, nigdy nie bierz steroidów. Niekórzy mogą dostać wtedy Cortef i pozbawić się aktywnej ostatniej drogi hamowania stanu zapalnego jaka została.
– Ludzie z DQ 2 mogą mieć celiakie. 17-2-52A i 7-2-53
– C3a reprezentuje ścianę komórkową bakteri. Jest wysokie w boreliozie. W zawaleniu pleśni, C3a jest na normalnym poziomie a C4a jest wysoko.
– Po jego leczeniu, 92% pacjentów ma polepszenie po 6 miesiącach. Wierzy, że liczba ta jest obecnie wyższa, gdyż protokół ten jest polepszany.
– Daj sobie spokój z robieniem testów przeciwciał IgE i IgG nagrzyba
– Nowe domy są budowane bardzo szybko i są prawdopodobnie najgorsze jeśli chodzi o pleśń.
– To fałszywe przeświadczenie, że szramy czy rozstępy to bartonella a nocne poty to Babesia. (PD:co ciekawe raz w życiu miałem szramy 'Bartonellowe’ kompletnie bez problemów z tą bakterią za to miałem wtedy problem z pleśnią …).
– Konstrukcje domów wg.Amiszów praktycznie gwarantują powstawanie pleśni 
– Pleśń to problem choroby wewnątrz domu, nie na zewnątrz.
– Zmiany w diecie takie jak unikanie chleba, sera i innych rzeczy nie będzie miało wpływu na biotoksyny związane z pleśnią(wg.Shoemakera)
– Terapia hiperbaryczna i sauna nie pomagają
– Ćwiczenia aerobowe to błąd

– Kiedy nie ma wystarczającej ilości tlenu, co jest dość typowe w chorobie biotoksycznej, masz wtedy 2 ATP zamiast 38.
– Wielu pacjentów ma szponiaste palce dłoni u stóp
– Stwardnienie rozsiane to choroba,gdzie są zaburzone limfocyty regulacyjne Treg i podwyższone TGF-beta1.
– 45% pacjetnów z chorobą biotoksynową mają zmiany chorobowe, które wyglądają jak stwardnienie rozsiane na rezonansie magnetycznym
– Niski poziom homonu VIP związany jest z krótkim/płytkim oddechem podczas ćwiczeń
– Występuje także wrażenie jakby mrówki chodziły Ci po skórze
– W tej chorobie należy sprawdzać HLA, MSH, VIP, ADH, TGF-b1, C4a, MMP-9, VEGF, CD4+CD25+
– W chorobie biotoksynowej aromataza jest nadmiernie pobudzona – pacjenci mają niskie poziomy androgenów i podwyższone estrogenów
– Jeśli masz niski testosteron, niskie DHEA i inne androgeny i zaczniesz je podawać kiedy poziom aromatazy jest wysoko to estron i estradiol pojdą do góry. Blokery aromatazy nie działają w tym przypadku
– 58% dzieci z pleśnią mają przeciwciała przeciwko gliadynie(substancja występująca w glutenie)
– Fałszywie pozytywne ANA jest dość popularne
– Hashimoto nie jest związane z pleśnią
– Jest za to sekwencyjna aktywacja wrodzonego układu immunologicznego na ekspozycje na wilgotne/zalane budynki – C4a i TGF-b1 rosną w pierwszym dniu, leptyna w drugim, MMP-9 drugiego i trzeciego dnia, VEGF rośnie pierwszego dnia i rozregulowywuje się drugiego dnia
– Nadmobilni/nadelastyczni ludzie są w grupie najgorszych przypadków – 11-3-52B
– Niedobory MSH są związane z chronicznym bólem, słabą odpornością na ból i niskim poziomem endorfin
– Można zaliczyć reakcje 'die off’ podczas leczenia gronkowca w nosie
– Organizmy wewnątrzkomórkowe mogą nie podnosić elementu układu dopełniacza – C3a
– CIRS (Syndrom odpowiedzi na chroniczny stan zapalny) – nadal czeka na pacjenta, który będzie zawalony pleśnią z zewnątrz a nie z wewnątrz pomieszczenia. Wodzie zajmuje zaledwie 2 dni,aby powstała pleśń w strukturze budynku.
– Normalną drogą do zahamowania nieprawidłowej odpowiedzi wrodzonego układu odpornościowego jest hormon MSH i VIP, jednak VIP nie zadziała jeśli inne biomarkery biotoksyn są podwyższone.
– Musisz zająć się tą chorobą w odpowiedniej kolejności.
– Badanie na 20 pacjentach poprzez podawanie hormonu VIP – naprawił on problemy z pulsem i poprawił ogólne problemy zdrowotne. Po 18miesiącach leczenia stwierdził, że VIP jest bezpieczny i efektywny
– 11-3-52B i 4-3-53 to to co Shoemaker nazywa osobami lękliwymi
– ERMI – indeks środowiskowy poziomu pleśni – mycometrics.com
– Rozróżnia 2 typy pleśni – wewnątrz domowe i zewnątrz które dostają się do domu poprzez okna w domu. Ten drugi typ generalnie nie jest problematyczny
– Jest już nowy indeks środowiskowy pleśni nazywany HERTSMI-2 który używany jest, gdy osoba jest chora(wcześniejsza ekspozycja na pleśń) i chce wiedzieć czy bezpiecznie jest dla niej z powrotem do domu. Nowe wyniki to – prawidłowy powinien być poniżej 10, szare pole(zatem raczej odradza się wchodzenia) to 11-15, 16 i wyżej to niebezpiecznie.
– Borelioza i pleśń mają tą samą cechę wspólną – niskie MSH i niski VIP
– TGF-b1 powinno być poniżej 5000. Gronkowiec w nosie może być czynnikiem podwyższonego TGF-b1.
– Nie powinno brać się hormonu VIP jeśli ERMI wynosi pow.2. Powinno się mięć także negatywny VCS i być wolnym od gronkowca w nosie(MARCoNS)
– Kortyzol powyżej 20 jest problemem. ACTH powinno być obniżone kiedy kortyzol jest nisko. Jeśli ACTH jest wyższe niż kortyzol, wtedy jest to problem.
– Kiedy otwierasz okno w domu, poziomy pleśni z grupy 2 (dobra pleśń) się zwiększają
– Jeśli chodzi o ćwiczenia, można zacząć od 5 minut na bierzni i zwiększać długość o 2 minuty codziennie.Można też robić przysiady przez 15minut czy też podnosić ciężary.
– Niektóre mykotoksyny mają grupy acetylowe, które prowadzą do zwiększenia C4a poprzez MASP2. Jeśli nie ma wolnych grup acetylowych, C4a może być na normalnym poziomie nawet kiedy choroba pleśniowa jest aktywna.
– Kiedy jest wysokie TGF-b1 a niskie C4a,może to być marker gronkowca w nosie
– VIP blokuje MASP2 które może spaść przy wysokim poziomie C4a. Może spaść z 40tyś do 10tyś jednak generalnie nie niżej niż z 10tys do 5tyś.
– Używa Procrit(PD:lek używany do leczenia anemi u ludzi z problemami z nerkami) do obniżenia C4a
– Zaadresowanie problemów z hormonem VIP to napewno nie pierwsza rzecz którą powinno się zająć. Jeśli ludzie nie użyją tego prawidłowo, nie tylko nie będzie działał, ale może doprowadzić do tego, że będzie niedostępny dla tych, którzy faktycznie mogą czerpać z niego korzyści
– Jest on jak powłoka farby – musisz wpierw naprawić strukturę a następnie ją pomalować.
– Wysokie dawki oleju rybiego mogą być używane zamiast Actos u ludzi SLENDER. Należy być na diecie bez amylazy bedąc na oleju rybim czy też Actos.
– Jeśli masz reakcje herx, występuje pogorszenie w kolumnach D i E testu VCS. Leczenie Actos lub olejem rybim z cholestyraminą może unormować wyniki testu VCS.
– Galaxy Diagnostics to nowy lab, który wykonuje polepszony test na bartonellę.
– Zauważyli, że acetylacja i metylacja to coś, co możę być używane do zmieniania genomu prowadząc do choroby. Jest to obszar, który wymaga ciągłych badań.
– Na MARCoNS rifampina to świetny eliminator biofilmu. Jeśli nie może być brana, zwiększ dawkę x3 sprayu BEG(BEG spray)
– Jeśli chodzi o najważniejsze testy – TGF-b1 to nr.1, CD4+CD25+ a następnie C4a.
– Jeśli CD4+CD25+ jest nisko, pacjent ma kłopoty. VIP podniesie go na nogi.

 

 

Post wydał Ci się wartościowy?a może po prostu mnie lubisz ;)?podziel się nim na Facebooku i go udostępnij!

Polub tego bloga na FB, gdzie znajdziesz też dodatkowe newsy, których tutaj nie publikuje https://www.facebook.com/zdrowiebeztajemnic

Obserwuj mnie na instagramie www.instagram.com/premyslaw84

Głosuj i wybieraj kolejne tematy – prawa strona bloga – zakładka „Ankieta”

Podziel się tym artykulem na facebooku:

Płatne konsultacje

Konsultacje zdrowotne
rejestracja@zdrowiebeztajemnic.pl

Ankieta

Który z ponizszych artykulów chcialbys /chcialabys przeczytac?

Który z poniższych artykułów chciałbyś /chciałabyś przeczytać?

View Results

Loading ... Loading ...

Archiwum